CS 771
Artificial Intelligence

Adversarial Search
Typical assumptions

• Two agents whose actions alternate
• Utility values for each agent are the opposite of the other
 – This creates the adversarial situation
• Fully observable environments
• In game theory terms:
 – “Deterministic, turn-taking, zero-sum games of perfect information”
• Generalizes to stochastic games, multiple players, non zero-sum, etc.
Game tree (2-player, deterministic, turns)

How do we search this tree to find the optimal move?
Games

• Adversarial search or games are interesting because they are too hard to solve
 – Chess has an average branching factor of 35
 – Games often go to 50 moves
 – Search tree has about 35^{100} or 10^{154} nodes (however search graph has about 10^{40} distinct nodes)

• Games, like real world, therefore require the ability to make some decision even when the optimal decision is infeasible

• Games also penalize inefficiency severely
Why does efficiency matter?

- An implementation of A* search that is half as efficient will simply take twice as long to run to completion.
- A chess program that is half as efficient in using its available time probably will be beaten into the ground, other things being equal.
- Therefore, how to optimally use time is a very important issue.
 - Pruning allows ignoring portions of the search tree that make no difference to the final choice.
 - Heuristic evaluation functions allow us to approximate true utility of a state without doing a complete search.
Search versus Games

• **Search** – no adversary
 – Solution is (heuristic) method for finding goal
 – Heuristics and CSP techniques can find *optimal* solution
 – Evaluation function: estimate of cost from start to goal through given node
 – Examples: path planning, scheduling activities

• **Games** – adversary
 – Solution is strategy
 • strategy specifies move for every possible opponent reply
 – Time limits force an *approximate* solution
 – Evaluation function: evaluate “goodness” of game position
 – Examples: chess, checkers, Othello, backgammon
Games as Search

• Two players: MAX and MIN
• MAX moves first and they take turns until the game is over
 – Winner gets reward, loser gets penalty
 – “Zero sum” means the sum of the reward and the penalty is a constant
• Formal definition as a search problem:
 – Initial state: Set-up specified by the rules, e.g., initial board configuration of chess.
 – Player(s): Defines which player has the move in a state.
 – Actions(s): Returns the set of legal moves in a state.
 – Result(s,a): Transition model defines the result of a move.
 • also refered to as Successor function: list of (move,state) pairs specifying legal moves.
 – Terminal-Test(s): Is the game finished? True if finished, false otherwise.
 – Utility function(s,p): Gives numerical value of terminal state s for player p.
 • E.g., win (+1), lose (-1), and draw (0) in tic-tac-toe.
 • E.g., win (+1), lose (0), and draw (1/2) in chess.
• MAX uses search tree to determine next move
Game tree (2-player, deterministic, turns)

How many terminal nodes does this search tree have?

9! = 362,880

How do we search this tree to find the optimal move?
Optimal decisions in games

• In a normal search, optimal solution is a sequence of actions leading to a goal state, a terminal state which is a win.

• In adversarial search MIN has something to say about it.

• MAX must find a contingent strategy, which specifies:
 – MAX’s move in the initial state.
 – Then, MAX’s moves in the states resulting from every possible response by MIN.
 – Then, MAX’s move in the states resulting from every possible response by MIN to those moves, and so on.
An optimal procedure: The Min-Max method

Designed to find the optimal strategy for Max and find best move:
1. Generate the whole game tree, down to the leaves
2. Apply utility (payoff) function to each leaf
3. Back-up values from leaves through branch nodes:
 1. a Max node computes the Max of its child values
 2. a Min node computes the Min of its child values
4. At root: choose the move leading to the child of highest value
- This game ends after one move each by MAX and MIN
- In game parlance, we say that this tree is one move deep, consisting of each half moves, each of which is called a ply
The Min-Max method

1. Given a game tree, optimal strategy can be determined from the minimax value of each node, written as MINIMAX(n)

2. The minimax value of a node is (for MAX) of being in the corresponding state, assuming that both players play optimally its utility

3. Given a choice
 1. MAX prefers to move to a state of maximum value
 2. Whereas, MIN prefers a state of minimum value
Two-Ply Game Tree

MAX

MIN

3 12 8 2 4 6 14 5 2
Two-Ply Game Tree
Two-Ply Game Tree

Minimax maximizes the utility for the worst-case outcome for max.
Pseudocode for Minimax Algorithm

\begin{verbatim}
function MINIMAX-DECISION(state) returns an action

inputs: state, current state in game

return \text{arg max}_{a \in \text{ACTIONS}(state)} \text{MIN-VALUE(Result(state,a))}

function MAX-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return \text{UTILITY(state)}

v \leftarrow -\infty

for a in ACTIONS(state) do

v \leftarrow \text{MAX}(v, \text{MIN-VALUE(Result(state,a)))}

return v

function MIN-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return \text{UTILITY(state)}

v \leftarrow +\infty

for a in ACTIONS(state) do

v \leftarrow \text{MIN}(v, \text{MAX-VALUE(Result(state,a)))}

return v
\end{verbatim}
Properties of Minimax

• **Complete?**
 – Yes (if tree is finite)

• **Optimal?**
 – Yes (against an optimal opponent).
 – Can it be beaten by an opponent playing sub-optimally?
 • No. (Why not?)

• **Time complexity?**
 – O(b^m)

• **Space complexity?**
 – O(bm) (depth-first search, generate all actions at once)
 – O(m) (backtracking search, generate actions one at a time)
Game Tree Size

- **Tic-Tac-Toe**
 - $b \approx 5$ legal actions per state on average, total of 9 plies in game
 - “ply” = one action by one player, “move” = two plies
 - $5^9 = 1,953,125$
 - $9! = 362,880$ (Computer goes first)
 - $8! = 40,320$ (Computer goes second)
 - \rightarrow exact solution quite reasonable

- **Chess**
 - $b \approx 35$ (approximate average branching factor)
 - $d \approx 100$ (depth of game tree for “typical” game)
 - $b^d \approx 35^{100} \approx 10^{154}$ nodes!!
 - \rightarrow exact solution completely infeasible

It is usually impossible to develop the whole search tree
Static (Heuristic) Evaluation Functions

• **An Evaluation Function:**
 – Estimates how good the current board configuration is for a player
 – Typically, evaluates how good it is for the player, how good it is for the opponent, then subtract the opponent’s score from the player’s
 – Othello: Number of white pieces - Number of black pieces
 – Chess: Value of all white pieces - Value of all black pieces

• **Typical values from -infinity (loss) to +infinity (win) or [-1, +1].**

• **If the board evaluation is X for a player, it’s -X for the opponent**
 – “Zero-sum game”
Evaluation functions

For chess, typically *linear* weighted sum of features

\[\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

e.g., \(w_1 = 9 \) with
\[f_1(s) = (\text{number of white queens}) - (\text{number of black queens}), \text{ etc.} \]

Cutting off search

MinimaxCutoff is identical to **MinimaxValue** except

1. **Terminal?** is replaced by **Cutoff?**
2. **Utility** is replaced by **Eval**

Does it work in practice?

\[b^m = 10^6, \quad b = 35 \quad \Rightarrow \quad m = 4 \]

4-ply lookahead is a hopeless chess player!

4-ply \(\approx \) human novice
8-ply \(\approx \) typical PC, human master
12-ply \(\approx \) Deep Blue, Kasparov
Applying MiniMax to tic-tac-toe

- The static evaluation function heuristic

Figure 4.16 Heuristic measuring conflict applied to states of tic-tac-toe.
Backup Values

Figure 4.17 Two-ply minimax applied to the opening move of tic-tac-toe.
Figure 4.18 Two-ply minimax applied to X's second move of tic-tac-toe.
Figure 4.19 Two-ply minimax applied to X’s move near end game.
Digression: Exact values don’t matter

MAX

MIN

Behaviour is preserved under any monotonic transformation of Eval

Only the order matters:
 payoff in deterministic games acts as an ordinal utility function
Alpha-Beta Pruning
Exploiting the Fact of an Adversary

• If a position is provably bad:
 – It is NO USE expending search time to find out exactly how bad
• If the adversary can force a bad position:
 – It is NO USE expending search time to find out the good positions that the adversary won’t let you achieve anyway

• Bad = not better than we already know we can achieve elsewhere

• Contrast to normal search:
 – ANY node might be a winner
 – ALL nodes must be considered
 – (A* avoids this through knowledge, i.e., heuristics)
Alpha-Beta Pruning

• Problem with minimax search is that number of game states it has to examine is exponential in the depth of the tree
• We can not eliminate the exponent, but can effectively cut it in half
• The trick is that it is possible to compute the correct minimax decision without looking at every node of the game tree
 – One way to achieve this is to use alpha-beta pruning
 – While applied to a standard minimax tree, it returns the same move as minimax would, but prunes away branches that can not possibly influence the final decision
Alpha-Beta Pruning

• The general principle is this
 – Consider a node n somewhere in the tree such that the payer has an option to moving to that node
 – If player has a better choice (node) m, either at the parent node of n or at any choice point further up then node n will never be reached in actual play
 – So once we have found out enough about n to reach this conclusion (by examining some of its descendants), we can prune it
Alpha-Beta Example

Do DF-search until first leaf

Range of possible values $[-\infty, +\infty]$
Alpha-Beta Example

MAX

MIN

[∞, 3]

[∞, +∞]
Alpha-Beta Example
Alpha-Beta Example

MAX

MIN

[3,3]

[3, +∞]
Alpha-Beta Example

MAX

MIN

[3,3]
Alpha-Beta Example

MAX

MIN

[3,3] [3, +\infty] [-\infty, 2]
Alpha-Beta Example

This node is worse for MAX
Alpha-Beta Example
Alpha-Beta Example
Alpha-Beta Example

```
MAX
MIN
```

```
[3,3] [3,3] [−∞,2] [2,2]
```

```
3 12 8 2 14 5 2
```

```
X X
```

```
[3,3] [3,3] ≤ 2
```

```
[−∞,2] [2,2]
```
Alpha-Beta Example

MAX

MIN

[3,3] 3 [-\infty,2] \leq 2 [2,2]
General alpha-beta pruning

• Consider a node n in the tree where the player has a choice of moving to n

• If player has a better choice m at:
 – Parent node of n
 – Or any choice point further up

• Then n will never be reached in play

• Hence, when that much is known about n, it can be pruned
Alpha-beta Algorithm

- Depth first search
 - only considers nodes along a single path from root at any time

\[
\alpha = \text{highest-value choice found at any choice point of path for MAX} \\
\text{(initially, } \alpha = -\infty) \\
\beta = \text{lowest-value choice found at any choice point of path for MIN} \\
\text{(initially, } \beta = +\infty)
\]

- Pass current values of \(\alpha\) and \(\beta\) down to child nodes during search
- Update values of \(\alpha\) and \(\beta\) during search:
 - MAX updates \(\alpha\) at MAX nodes
 - MIN updates \(\beta\) at MIN nodes
- Prune remaining branches at a node when \(\alpha \geq \beta\)
When to Prune?

- Prune whenever $\alpha \geq \beta$
 - Prune below a Max node whose alpha value becomes greater than or equal to the beta value of its ancestors
 - Max nodes update alpha based on children’s returned values
 - Prune below a Min node whose beta value becomes less than or equal to the alpha value of its ancestors
 - Min nodes update beta based on children’s returned values
Alpha-Beta Example Revisited

Do DF-search until first leaf

\[a = -\infty \]
\[b = +\infty \]
\(\alpha = \) highest-value choice found at any choice point of path for MAX (initially, \(\alpha = -\infty \))
\(\beta = \) lowest-value choice found at any choice point of path for MIN (initially, \(\beta = +\infty \))

MIN updates \(\beta \), based on kids

Alpha-Beta Example Revisited

\(\alpha = \) highest-value choice found at any choice point of path for MAX (initially, \(\alpha = -\infty \))

\(\beta = \) lowest-value choice found at any choice point of path for MIN (initially, \(\beta = +\infty \))

MIN updates \(\beta \), based on kids.
No change.
Alpha-Beta Example Revisited

\[\alpha = \text{highest-value choice found at any choice point of path for MAX (initially, } \alpha = -\infty) \]

\[\beta = \text{lowest-value choice found at any choice point of path for MIN (initially, } \beta = +\infty) \]

MAX updates \(\alpha \), based on kids.

\[\alpha = 3 \]

\[\beta = +\infty \]

3 is returned as node value.
α = highest-value choice found at any choice point of path for MAX (initially, α = −infinity)
β = lowest-value choice found at any choice point of path for MIN (initially, β = +infinity)
$\alpha =$ highest-value choice found at any choice point of path for MAX (initially, $\alpha = -\infty$)

$\beta =$ lowest-value choice found at any choice point of path for MIN (initially, $\beta = +\infty$)

MIN updates β, based on kids.
\(\alpha = \) highest-value choice found at any choice point of path for MAX (initially, \(\alpha = -\infty \))
\(\beta = \) lowest-value choice found at any choice point of path for MIN (initially, \(\beta = +\infty \))

\(a = 3 \)
\(b = 2 \)
\(a \geq b, \) so prune.

\(a = 3 \quad \beta = +\infty \)
\(a = 3 \quad \beta = 2 \) \(\alpha \geq \beta, \) so prune.
Alpha-Beta Example Revisited

\(\alpha = \text{highest-value choice found at any choice point of path for MAX (initially, } \alpha = -\infty) \)

\(\beta = \text{lowest-value choice found at any choice point of path for MIN (initially, } \beta = +\infty) \)

MAX updates \(\alpha \), based on kids.

No change.

2 is returned as node value.
Alpha-Beta Example Revisited

\(\alpha = \) highest-value choice found at any choice point of path for MAX (initially, \(\alpha = -\infty \))

\(\beta = \) lowest-value choice found at any choice point of path for MIN (initially, \(\beta = +\infty \))
Alpha-Beta Example Revisited

\[\alpha = \text{highest-value choice found at any choice point of path for MAX (initially, } \alpha = -\infty) \]

\[\beta = \text{lowest-value choice found at any choice point of path for MIN (initially, } \beta = +\infty) \]

MIN updates \(\beta \), based on kids.

\[\alpha = 3 \]

\[\beta = 14 \]
Alpha-Beta Example Revisited

\[\alpha = \text{highest-value choice found at any choice point of path for MAX (initially, } \alpha = -\infty) \]

\[\beta = \text{lowest-value choice found at any choice point of path for MIN (initially, } \beta = +\infty) \]

\[\alpha = 3 \quad \beta = +\infty \]

MIN updates \(\beta \), based on kids.

\[\alpha = 3 \quad \beta = 5 \]
\(\alpha = \text{highest-value choice found at any choice point of path for MAX (initially, } \alpha = -\infty) \)

\(\beta = \text{lowest-value choice found at any choice point of path for MIN (initially, } \beta = +\infty) \)

\begin{align*}
\alpha &= 3 \\
\beta &= +\infty
\end{align*}

2 is returned as node value.
Alpha-Beta Example Revisited

\(\alpha = \) highest-value choice found at any choice point of path for MAX (initially, \(\alpha = -\infty\))

\(\beta = \) lowest-value choice found at any choice point of path for MIN (initially, \(\beta = +\infty\))

Max calculates the same node value, and makes the same move!
Example
Effectiveness of Alpha-Beta Search

• **Worst-Case**
 – branches are ordered so that no pruning takes place. In this case alpha-beta gives no improvement over exhaustive search

• **Best-Case**
 – each player’s best move is the left-most child (i.e., evaluated first)
 – in practice, performance is closer to best rather than worst-case

• **In practice often get** \(O(b^{(m/2)}) \) **rather than** \(O(b^m) \)
 – this is the same as having a branching factor of \(\sqrt{b} \),
 • \((\sqrt{b})^m = b^{(m/2)} \), i.e., we effectively go from \(b \) to square root of \(b \)
 – e.g., in chess go from \(b \sim 35 \) to \(b \sim 6 \)
 • this permits much deeper search in the same amount of time
Final Comments about Alpha-Beta Pruning

- Pruning does not affect final results
- Entire subtree can be pruned
- Good move *ordering* improves effectiveness of pruning
- Repeated states are again possible
 - Store them in memory = transposition table
Pseudocode for Alpha-Beta Algorithm

function ALPHA-BETA-SEARCH(state) returns an action
inputs: state, current state in game
\[\nu \leftarrow \text{MAX-VALUE}(state, -\infty, +\infty) \]
return the action in ACTIONS(state) with value \(\nu \)
Pseudocode for Alpha-Beta Algorithm

function ALPHA-BETA-SEARCH(state) **returns** an action

inputs: state, current state in game

\[v \leftarrow \text{MAX-VALUE}(state, -\infty, +\infty) \]

return the *action* in ACTIONS(state) with value \(v \)

function MAX-VALUE(state, \(\alpha \), \(\beta \)) **returns** a utility value

if TERMINAL-TEST(state) **then return** UTILITY(state)

\[v \leftarrow -\infty \]

for \(a \) in ACTIONS(state) **do**

\[v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{Result}(s,a), \alpha, \beta)) \]

if \(v \geq \beta \) **then return** \(v \)

\[\alpha \leftarrow \text{MAX}(\alpha, v) \]

return \(v \)

(MIN-VALUE is defined analogously)
Example

-which nodes can be pruned?
Answer: NONE! Because the most favorable nodes for both are explored last (i.e., in the diagram, are on the right-hand side)
Second Example
(the exact mirror image of the first example)

-which nodes can be pruned?
Answer to Second Example
(the exact mirror image of the first example)

which nodes can be pruned?

Answer: LOTS! Because the most favorable nodes for both are explored first (i.e., in the diagram, are on the left-hand side)
The State of Play

• Checkers:
 – Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994

• Chess:
 – Deep Blue defeated human world champion Garry Kasparov in a six-game match in 1997

• Othello:
 – human champions refuse to compete against computers: they are too good

• Go:
 – human champions refuse to compete against computers: they are too bad
 – $b > 300$ (!)

• See (e.g.) http://www.cs.ualberta.ca/~games/ for more information
PHILADELPHIA (Reuter) - IBM chess computer Deep Blue made chess history Saturday when it defeated world champion Garry Kasparov, the first time a computer program has beaten a grandmaster under strict tournament conditions.

IBM Deep Blue - Kasparov,G [B22]
Philadelphia (1), 1996

Deep Blue

- 1957: Herbert Simon
 - “within 10 years a computer will beat the world chess champion”

- 1997: Deep Blue beats Kasparov

- Parallel machine with 30 processors for “software” and 480 VLSI processors for “hardware search”

- Searched 126 million nodes per second on average
 - Generated up to 30 billion positions per move
 - Reached depth 14 routinely

- Uses iterative-deepening alpha-beta search with transpositioning
 - Can explore beyond depth-limit for interesting moves
Summary

• Game playing is best modeled as a search problem

• Game trees represent alternate computer/opponent moves

• Evaluation functions estimate the quality of a given board configuration for the Max player

• Minimax is a procedure which chooses moves by assuming that the opponent will always choose the move which is best for them

• Alpha-Beta is a procedure which can prune large parts of the search tree and allow search to go deeper

• For many well-known games, computer algorithms based on heuristic search match or out-perform human world experts