Objects

- These are basic computational entities in object oriented programming
 - Imagine you are building a house –
 - the bricks in the house are the basic entities,
 - no matter which room you are building, you need to use bricks
 - Imagine you are building a program
 - The basic entities are objects
 - Question: What are the basic entities in a procedural programming language like C?

What are Objects?

Topics

- Objects
- Classes
Exercise 1.1

- For each of the given problems, identify all the objects

Objects have Properties

- Objects are not just names
- They have properties.
 - Example:
 - Object: ObjectsFirstWithJavaBook
 - Property 1:
 - Property Name: Title
 - Property Type: String
 - Property Value: "Objects First with Java Book"
 - Property 2:
 - Property Name: DatePublished
 - Property Type: int (Short for Integer)
 - Property Value: 2005

More about Properties

- Other names for Properties:
 - Fields: This is commonly used in Java

- How to choose properties?
 - Depends on what you want to do with an object (Purpose)
 - Example:
 - ObjectsFirstWithJava object
 - Purpose: To print out details of the book
 - Good Properties: {Name, Publisher, Year}
 - Bad Properties: {J2SDK_version, authors_country, color_of_book}

Fields and Types

- Fields are places where the objects store data specific to the field.
 - Name: "John Galt"
 - SSN: 555-55-5555
 - Height: 6.1
- You can think of the fields as variables in other programming languages.
 - But these are local variables
 - Local to the objects
- NOTE: These fields already have values assigned to them
Primitive Types in Java

<table>
<thead>
<tr>
<th>Type Name</th>
<th>Kind of Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean</td>
<td>true or false</td>
</tr>
<tr>
<td>char</td>
<td>single character</td>
</tr>
<tr>
<td>byte</td>
<td>integer</td>
</tr>
<tr>
<td>short</td>
<td>integer</td>
</tr>
<tr>
<td>int</td>
<td>integer</td>
</tr>
<tr>
<td>long</td>
<td>integer</td>
</tr>
<tr>
<td>float</td>
<td>floating-point number</td>
</tr>
<tr>
<td>double</td>
<td>floating-point number</td>
</tr>
</tbody>
</table>

Exercise 1.2

- For each of the given problems, identify the objects
- For each object, write the properties

What are classes?

- Groups of objects that share common properties and common behaviors.
- How to assemble a class?
 - Collect all the objects from which you want to create a class
 - Identify common properties (fields)
 - Put these properties into class (without their values)
- If the objects do not share common properties, then it is not possible to form classes
- Now the class represents all the objects
Example of Class

- Example:
 - {Orange, Banana, Mango, Grape}
 - Fields: {Eatable, Taste, Nutritional_Value}
 - Class: Fruit

Exercise 1.3

- Given the statements form the class.

Methods in Classes

- Each method is like a function in procedural programming language like C.
 - The difference is that it is local to the class
 - It can act upon the local variables.

- Signature:
 - Access_Constraint Return_type Method_name arguments

- We will see the code in the lab