Closure under the Regular Operations

September 7, 2013
Application of NFA

- Now we use the NFA to show that collection of regular languages is closed under regular operations union, concatenation, and star.
- Earlier we have shown this closure for union using a Cartesian product of DFA.
- For uniformity reason we reconstruct that proof using NFA.
Theorem 1.45

The class of regular languages is closed under the union operation.

Proof idea:

Let regular languages A_1 and A_2 be recognized by NFA N_1 and N_2, respectively.

To show that $A_1 \cup A_2$ is regular we will construct an NFA N that recognizes $A_1 \cup A_2$.

N must accept its input if either N_1 or N_2 accepts its input. Hence, N must have a new state that will allow it to guess nondeterministically which of N_1 or N_2 accepts it.

Guessing is implemented by ϵ transitions from the new state to the start states of N_1 and N_2, as seen in Figure 1.
Theorem 1.45

The class of regular languages is closed under the union operation

Proof idea:
The class of regular languages is closed under the union operation

Proof idea:

- Let regular languages A_1 and A_2 be recognized by NFA N_1 and N_2, respectively
The class of regular languages is closed under the union operation

Proof idea:

- Let regular languages A_1 and A_2 be recognized by NFA N_1 and N_2, respectively
- To show that $A_1 \cup A_2$ is regular we will construct an NFA N that recognizes $A_1 \cup A_2$
The class of regular languages is closed under the union operation.

Proof idea:

- Let regular languages A_1 and A_2 be recognized by NFA N_1 and N_2, respectively.
- To show that $A_1 \cup A_2$ is regular we will construct an NFA N that recognizes $A_1 \cup A_2$.
- N must accept its input if either N_1 or N_2 accepts its input. Hence, N must have a new state that will allow it to guess nondeterministically which of N_1 or N_2 accepts it.
The class of regular languages is closed under the union operation

Proof idea:

- Let regular languages A_1 and A_2 be recognized by NFA N_1 and N_2, respectively.
- To show that $A_1 \cup A_2$ is regular we will construct an NFA N that recognizes $A_1 \cup A_2$.
- N must accept its input if either N_1 or N_2 accepts its input. Hence, N must have a new state that will allow it to guess nondeterministically which of N_1 or N_2 accepts it.
- Guessing is implemented by ϵ transitions from the new state to the start states of N_1 and N_2, as seen in Figure 1.
An NFA recognizing $A_1 \cup A_2$

Figure 1: Construction of N to recognize $A_1 \cup A_2$
Proof

Let $N_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1)$, and
$N_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2)$
Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$ using the following procedure:
Construction procedure

1. \[Q = \{ q_0 \} \cup Q_1 \cup Q_2 \]: That is, the states of \(N \) are all states on \(N_1 \) and \(N_2 \) with the addition of a new state \(q_0 \).

3. The start state of \(N \) is \(q_0 \).

4. The accept states of \(N \) are \(F = F_1 \cup F_2 \): That is, the accept states of \(N \) are all the accept states of \(N_1 \) and \(N_2 \).

Define \(\delta \) so that for any \(q \in Q \) and any \(a \in \Sigma \):

\[
\delta(q, a) = \\
\begin{cases}
\delta_1(q, a), & \text{if } q \in Q_1 \\
\delta_2(q, a), & \text{if } q \in Q_2 \\
\{ q_1, q_2 \}, & \text{if } q = q_0 \text{ and } a = \epsilon \\
\emptyset, & \text{if } q = q_0 \text{ and } a \neq \epsilon.
\end{cases}
\]

Closure under the Regular Operations
Construction procedure

1. $Q = \{q_0\} \cup Q_1 \cup Q_2$: That is, the states of N are all states on N_1 and N_2 with the addition of a new state q_0.
Construction procedure

1. $Q = \{q_0\} \cup Q_1 \cup Q_2$: That is, the states of N are all states on N_1 and N_2 with the addition of a new state q_0

2. The start state of N is q_0
Construction procedure

1. \(Q = \{q_0\} \cup Q_1 \cup Q_2 \): That is, the states of \(N \) are all states on \(N_1 \) and \(N_2 \) with the addition of a new state \(q_0 \).

2. The start state of \(N \) is \(q_0 \).

3. The accept states of \(N \) are \(F = F_1 \cup F_2 \): That is, the accept states of \(N \) are all the accept states of \(N_1 \) and \(N_2 \).
Construction procedure

1. \[Q = \{q_0\} \cup Q_1 \cup Q_2: \text{ That is, the states of } N \text{ are all states on } N_1 \text{ and } N_2 \text{ with the addition of a new state } q_0 \]
2. The start state of \(N \) is \(q_0 \)
3. The accept states of \(N \) are \(F = F_1 \cup F_2: \text{ That is, the accept states of } N \text{ are all the accept states of } N_1 \text{ and } N_2 \)
4. Define \(\delta \) so that for any \(q \in Q \) and any \(a \in \Sigma \):
Construction procedure

1. \(Q = \{q_0\} \cup Q_1 \cup Q_2 \): That is, the states of \(N \) are all states on \(N_1 \) and \(N_2 \) with the addition of a new state \(q_0 \)

2. The start state of \(N \) is \(q_0 \)

3. The accept states of \(N \) are \(F = F_1 \cup F_2 \): That is, the accept states of \(N \) are all the accept states of \(N_1 \) and \(N_2 \)

4. Define \(\delta \) so that for any \(q \in Q \) and any \(a \in \Sigma_\epsilon \):

\[
\delta(q, a) = \begin{cases}
\delta_1(q, a), & \text{if } q \in Q_1 \\
\delta_2(q, a), & \text{if } q \in Q_2 \\
\{q_0^1, q_0^2\}, & \text{if } q = q_0 \text{ and } a = \epsilon \\
\emptyset, & \text{if } q = q_0 \text{ and } a \neq \epsilon.
\end{cases}
\]
Consider the alphabet $\Sigma = \{0, 1\}$ and the languages:

$A = \{w \mid w \text{ begins with 1 and ends with 0}\}$

$B = \{w \mid w \text{ contains at least three 1}\}$

$C = \{w \mid w = x0101y, x, y \in \Sigma^*\}$

$D = \{w \mid w \text{ does not contain the substring 110}\}$

Use the construction given in the proof of theorem 1.45 to give the state diagrams recognizing the languages $A \cup B$ and $C \cup D$.
The class of regular languages is closed under concatenation operation

Proof idea:
Assume two regular languages, A_1 and A_2 recognized by NFAs N_1 and N_2, respectively. Construct N as suggested in Figure 2.
The class of regular languages is closed under concatenation operation.

Proof idea: Assume two regular languages, A_1 and A_2 recognized by NFAs N_1 and N_2, respectively. Construct N as suggested in Figure 2.
Construction of NFA N

Figure 2: Construction of N to recognize $A_1 \circ A_2$
Construction procedure

- Combine N_1 and N_2 into a new automaton N that starts in the start state of N_1
- Add ϵ transitions from the accept states of N_1 to the start state of N_2
- Set accept states of N to be the accept states on N_2
Proof

Let $N_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1)$ recognize A_1 and $N_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2)$ recognize A_2.

Construct $N = (Q, \Sigma, \delta, q_0^1, F_2)$ by the following procedure:
Construction procedure

1. $Q = Q_1 \cup Q_2$. The states of N are all states of N_1 and N_2. The start state is the state q_{10} of N_1. The accept states is the set F_2 of the accept states of N_2. Define δ so that for any $q \in Q$ and any $a \in \Sigma$:

 \[
 \delta(q, a) = \begin{cases}
 \delta_1(q, a), & \text{if } q \in Q_1 \text{ and } q \not\in F_1 \\
 \delta_1(q, a), & \text{if } q \in F_1 \text{ and } a \neq \epsilon \\
 \delta_1(q, a) \cup \{q_20\}, & \text{if } q \in F_1 \text{ and } a = \epsilon \\
 \delta_2(q, a), & \text{if } q \in Q_2.
 \end{cases}
 \]
Construction procedure

1. \(Q = Q_1 \cup Q_2 \). The states of \(N \) are all states of \(N_1 \) and \(N_2 \).
Construction procedure

1. $Q = Q_1 \cup Q_2$. The states of N are all states of N_1 and N_2
2. The start state is the state q_0^1 of N_1
Construction procedure

1. $Q = Q_1 \cup Q_2$. The states of N are all states of N_1 and N_2
2. The start state is the state q_0^1 of N_1
3. The accept states is the set F_2 of the accept states of N_2
Construction procedure

1. $Q = Q_1 \cup Q_2$. The states of N are all states of N_1 and N_2
2. The start state is the state q_0^1 of N_1
3. The accept states is the set F_2 of the accept states of N_2
4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_e$:

$$
\begin{align*}
\delta(q, a) &= \delta_1(q, a), & \text{if } q \in Q_1 \text{ and } q \not\in F_1, \\
\delta(q, a) &= \delta_1(q, a) \cup \{q_2^0\}, & \text{if } q \in F_1 \text{ and } a \not= \epsilon, \\
\delta(q, a) &= \delta_2(q, a), & \text{if } q \in Q_2.
\end{align*}
$$
Construction procedure

1. \(Q = Q_1 \cup Q_2 \). The states of \(N \) are all states of \(N_1 \) and \(N_2 \)
2. The start state is the state \(q_0^1 \) of \(N_1 \)
3. The accept states is the set \(F_2 \) of the accept states of \(N_2 \)
4. Define \(\delta \) so that for any \(q \in Q \) and any \(a \in \Sigma_e \):

\[
\delta(q, a) = \begin{cases}
\delta_1(q, a), & \text{if } q \in Q_1 \text{ and } q \not\in F_1 \\
\delta_1(q, a), & \text{if } q \in F_1 \text{ and } a \neq \epsilon \\
\delta_1(q, a) \cup \{q_0^2\}, & \text{if } q \in F_1 \text{ and } a = \epsilon \\
\delta_2(q, a), & \text{if } q \in Q_2.
\end{cases}
\]
Consider the alphabet $\Sigma = \{0, 1\}$ and the languages:
$A = \{w | |w| \leq 5\}$
$B = \{w | \text{every odd position of } w \text{ is } 1\}$
$C = \{w | w \text{ contains at least three } 1\}$
$D = \{\epsilon\}$

Use the construction given in the proof of theorem 1.47 to give the state diagrams recognizing the languages $A \circ B$ and $C \circ D$ where \circ is concatenation operator.
The class of regular languages is closed under star operation
Theorem 1.49

The class of regular languages is closed under star operation

Proof idea: we have a regular language A_1, recognized by the NFA N_1 and want to prove that A_1^* is also a regular language. The procedure to prove this theorem is by construction of the NFA N that recognizes A_1^* as shown in Figure 3.
Procedure for the construction of N

Figure 3: Construction of N to recognize A_1^*
More on the proof idea

N is like *N*₁ with a new start state and an \(\epsilon \) transition from the new start state to \(q₁ \).

Since \(\epsilon \in A₁^* \) the new start state is an accepts state.

We add \(\epsilon \) transitions from the previous accept states of \(N₁ \) to the start state of \(N₁ \) allowing the machine to read and recognize strings of the form \(w₁ \circ \ldots \circ w_k \) where \(w₁, \ldots, w_k \in A₁ \).
More on the proof idea

- N is like N_1 with a new start state and an ϵ transition from the new start state to q_1
More on the proof idea

- N is like N_1 with a new start state and an ϵ transition from the new start state to q_1
- Since $\epsilon \in A_1^*$ the new start state is an accepts state
More on the proof idea

- N is like N_1 with a new start state and an ϵ transition from the new start state to q_1
- Since $\epsilon \in A_1^*$ the new start state is an accepts state
- We add ϵ transitions from the previous accept states of N_1 to the start state of N_1 allowing the machine to read and recognize strings of the form $w_1 \circ \ldots \circ w_k$ where $w_1, \ldots, w_k \in A_1$
Proof

Let $N_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1)$ recognize A_1.
Construct $N = (Q, \Sigma, \delta, q_0, F)$ by the procedure:
Construction procedure

Construction procedure

Construction procedure

Construction procedure
Construction procedure

1. \(Q = \{ q_0 \} \cup Q_1 \); that is, states of \(N \) are the states of \(N_1 \) plus a new state \(q_0 \).
Construction procedure

1. \(Q = \{ q_0 \} \cup Q_1 \); that is, states of \(N \) are the states of \(N_1 \) plus a new state \(q_0 \)
2. Start state if \(N \) is \(q_0 \)
Construction procedure

1. \(Q = \{q_0\} \cup Q_1 \); that is, states of \(N \) are the states of \(N_1 \) plus a new state \(q_0 \)
2. Start state if \(N \) is \(q_0 \)
3. \(F = \{q_0\} \cup F_1 \); that is, the accept states of \(N \) are the accept states of \(N_1 \) plus the new start state
Construction procedure

1. $Q = \{q_0\} \cup Q_1$; that is, states of N are the states of N_1 plus a new state q_0
2. Start state if N is q_0
3. $F = \{q_0\} \cup F_1$; that is, the accept states of N are the accept states of N_1 plus the new start state
4. Define δ so that for any $q \in Q$ and $a \in \Sigma$:

 \[
 \delta(q, a) = \begin{cases}
 \delta_1(q, a), & \text{if } q \in Q_1 \text{ and } q \notin F_1 \\
 \delta_1(q, a), & \text{if } q \in F_1 \text{ and } a \neq \epsilon \\
 \delta_1(q, a) \cup \{q_1\}, & \text{if } q \in F_1 \text{ and } a = \epsilon \\
 \emptyset, & \text{if } q = q_0 \text{ and } a \neq \epsilon \\
 \end{cases}
 \]
Construction procedure

1. $Q = \{q_0\} \cup Q_1$; that is, states of N are the states of N_1 plus a new state q_0
2. Start state if N is q_0
3. $F = \{q_0\} \cup F_1$; that is, the accept states of N are the accept states of N_1 plus the new start state
4. Define δ so that for any $q \in Q$ and $a \in \Sigma$:

$$\delta(q, a) = \begin{cases}
\delta_1(q, a), & \text{if } q \in Q_1 \text{ and } q \not\in F_1 \\
\delta_1(q, a), & \text{if } q \in F_1 \text{ and } a \neq \epsilon \\
\delta_1(q, a) \cup \{q_0^1\}, & \text{if } q \in F_1 \text{ and } a = \epsilon \\
\{q_0^1\}, & \text{if } q = q_0 \text{ and } a = \epsilon \\
\emptyset, & \text{if } q = q_0 \text{ and } a \neq \epsilon.
\end{cases}$$
Consider the alphabet $\Sigma = \{0, 1\}$ and the languages:

$A = \{w | w$ contains at least three 1s$\}$

$B = \{w | w$ contains at least two 0s and at most one 1$\}$

$C = \{\epsilon\}$

Use the construction given in the proof of theorem 1.49 to give the state diagrams recognizing the languages A^*, B^* and C^*.
We show here that class of regular languages is closed under complementation.

For that we will first show that if M is a DFA that recognizes a language B, swapping the accept and non-accept states in M yields a new DFA that recognizes the complement of B.
Proof

Let M' be the DFA M with accept and non-accept states swapped. We will show that M' recognizes the complement of B

1. Suppose M' accept x, i.e., if we run M' on x we end in an accept state of M'
2. Because M and M' have swapped accept/non-accept states, if we run M on x we would end in a non-accept state. Hence, $x \notin B$
3. Similarly, if x is not accepted by M', it would be accepted by M

Consequently, M' accepts those strings that are not accepted by M and therefore M' recognizes the complement of B.

Closure under the Regular Operations
Conclusion

- B has been an arbitrary regular language. Therefore, our construction shows how to build an automaton to recognize its complement.
- Hence, the complement of any regular language is also regular.
- Consequently, the class of regular languages is closed under complementation.
Interesting property

If M is an NFA that recognizes language C, swapping its accept and non-accept states doesn’t necessarily yield a new NFA that recognizes the complement of C.
Proof

We prove the interesting property by constructing a counter-example.

Consider the construction in Figure 4, where both NFA-s, M and M', accept aa.

![Figure 4: NFAs M and M'](image)

Figure 4: NFAs M and M'
Question

Is the class of languages recognized by NFAs closed under complementation?
Closure under complementation

- The class of languages recognized by NFA is still closed under complementation.
- This follows from the fact that the class of languages recognized by NFAs is precisely the class of languages recognized by DFA.
- The counter-example in Figure 4 shows the difference between the process of computations performed by DFAs and NFAs.