Evaluating an XPath Query on a Streaming XML Document

Prakash Ramanan
Department of Computer Science
Wichita State University
Wichita, KS 67260-0083
ramanan@cs.wichita.edu

Abstract

We present an efficient algorithm for evaluating an XPath query \(Q \) (involving only child and descendant axes) on a streaming XML document \(D \). Previously known in-memory algorithms for XPath evaluation use \(O(|D|) \) space and \(O(|Q||D|) \) time. Several previous algorithms for the streaming version use \(\Theta(d^n + c) \) space and \(\Theta(d^n|D|) \) time in the worst case; \(d \) is the depth of \(D \), \(n \) is the number of location steps in \(Q \), and \(c \) is the maximum number of candidate elements for output at any one time. In the worst case, the exponential \(\Theta(d^n) \) space alone could well exceed the \(O(|D|) \) space used by the in-memory algorithms. Our algorithm uses \(O(d|Q| + cn) \) space and \(O(|Q| + d + n^2)|D| \) time in the worst case. So, our algorithm is runtime competitive with the in-memory algorithms, while using much less memory space.

1 Introduction

We consider the XPath evaluation problem: Evaluate an XPath query \(Q \) on a streaming XML document \(D \). Let \(d \) denote the depth of \(D \), and \(n \) denote the number of location steps in \(Q \).

We mostly consider queries that involve only the child and descendant axes. As shown in [15], queries involving parent and ancestor axes can be rewritten to involve only child and descendant axes. Also, as we point out later, our algorithm can be extended to queries that also involve the preceding and preceding-sibling axes inside the predicates, without increasing the memory space or runtime. This extension is an unique feature of our algorithm.

First, consider the case when \(D \) is fully available (or can be stored) in the memory. Gottlob et al. [9] and Ramanan [17] presented evaluation algorithms that use \(O(|D|) \) space and \(O(|Q||D|) \) time.

From now onwards, let \(D \) be available only in streaming form. If \(Q \) does not have predicates, the evaluation problem is easy: A document node \(e \) should be output iff \(e \) and some of its ancestors (in \(D \)) match the location steps in \(Q \); this can be completely determined when the start tag of \(e \) is seen. For this case, the path stacks of Bruno et al. [6] can be adapted to solve the evaluation problem. The resulting algorithm uses \(O(dn) \) space and \(O(n|D|) \) time.

When \(Q \) has predicates, the evaluation problem is more complicated. At the time a document node \(e \) is seen, we may or may not know if \(e \) should be output. As before, \(e \) should be output iff \(e \) and some of its ancestors \(f \) (in \(D \)) match the location steps in \(Q \). Whether \(f \) satisfies the predicate in some location step might depend on some yet-to-be-seen descendants of \(f \) that are descendants/successors of \(e \). So, in general, an algorithm, after seeing part of a streaming \(D \), would have output some elements. There would be other (partly/fully) seen elements, called candidates for output: These are elements whose membership in the output can not be determined based on the part of \(D \) seen so far. So, any algorithm for this problem must store, at any instant, the candidates \(e \) as well as some of their ancestors \(f \) that could enable the candidates to qualify for the output.

There are two previously known algorithms for this problem: The XSQ algorithm of Peng and Chawathe [16], and the SPEX system of Olteanu et al. [14]. In the worst case, both these algorithms require \(\Theta(d^n) \) space and \(\Theta(d^n|D|) \) time just to handle the paths. The quantity \(d^n \) represents the number of different paths in \(D \) that a candidate \(e \) could take to reach the output; all these paths are embedded on the path from the root of \(D \) to \(e \). This space alone could well exceed the \(O(|D|) \) space used by the in-memory algorithms [9, 17] mentioned above.

We avoid using exponential space or time, by using efficient algorithms for three main components:

- Path stacks to compactly represent the paths that candidates could take to reach the output.
This is a much more elaborate version of the path stacks of [6].

- A predicate checker to determine when a node in the path stacks has satisfied/failed each predicate in Q. It scans the document bottom-up (while the nodes are streamed in document order), and determines which predicates in Q are satisfied/failed at each node.

- Candidate stacks to maintain the candidates and move them along to the output or trash.

We believe that our predicate checker would be of general use, in many other applications involving XPath.

For each path in the path stacks, the nodes on the path might satisfy their corresponding predicates in random order. A candidate should be output as soon as any one of its paths satisfies all the predicates. If we store all the paths as done in [6], then some redundant paths (that haven’t yet satisfied the predicates) at the top of the stack might hide a “good” path (i.e., one that has satisfied the predicates) below them. This would result in delaying the output of a candidate, thereby costing memory space. We present a mechanism to avoid storing redundant paths, and to quickly determine when a candidate should be output. Maintenance of the path and candidate stacks constitute the most intricate parts of our algorithm.

Related to the evaluation problem studied here is the XPath filtering problem that arises in document dissemination: Given a set of XPath queries, determine which of those queries have a nonempty output on a given streaming XML document. [1, 7, 8, 10, 11] presented algorithms for various versions of this problem. Of these, the XPush machine [11] is the only algorithm that allows general predicates in the queries.

This paper is an abridged version of [18]. About the same time, [3] presented an algorithm for filtering a streaming XML document with respect to a single XPath query. In Section 4, we show that our predicate checker can be used for filtering, with memory and runtime requirements competitive with theirs. [12] presented an XPath evaluation algorithm; they claim that their algorithm runs in polynomial space and time, but no explicit complexity bounds are presented. Recently, [13] presented an evaluation algorithm that uses $O(d^2|Q| + |D|)$ space and $O(d|Q||D|)$ time. This is slightly worse than our space and time requirements given below. Also, it is not clear if their algorithm can handle nested predicates, and predicates containing not and library functions, like aggregations and position (our algorithm can).

The easiest case for our algorithm arises when all the location steps in Q have the descendant axis (outside the predicates). In this case, our algorithm uses $O(d|Q| + c)$ space and $O((|Q| + d + n^2)|D|)$ time; c is the maximum number of candidates stored at any one time. The technically hardest part of our algorithm arises when some location steps in Q have the child axes. For each candidate, we need to store just enough information to backtrack and try alternate paths, when one path fails; some of the nodes for an alternate path would have closed (i.e., we would have seen the ending tag) by then (see Section 6). In this case, our algorithm uses $O(d|Q| + c)$ space and $O((|Q| + d + n^2)|D|)$ time in the worst case. These compare very favorably with the exponential $O(d^n + c)$ space and $O(d^n|D|)$ time requirements of [14, 16].

Most recently, [4] presented an XPath evaluation algorithm for nonrecursive documents: For any path P_Q in Q and any path P_D in D, there exists at most one embedding of P_Q in P_D. Their algorithm uses $O(|Q| \log |D| + C)$ bits of space and $O(|Q||D|)$ time, where C denotes the space required to store the candidates. For this special case, our algorithm uses $O(d|Q| + d \log |D| + C)$ bits of space and $O((|Q| + d)|D|)$ time. Since most real-life documents have small depth d, the resource requirements of the two algorithms are comparable. Our algorithm is much more general, and was not designed to give optimal performance for this very special case.

For the general case, since $n \leq \text{depth}(Q)$, our worst case runtime of $O((|Q| + d + n^2)|D|)$ is very competitive with the $O(|Q||D|)$ runtime of the in-memory algorithms [9, 17]; also, our algorithm uses much less memory space.

Other desirable features of our algorithm:

- Unlike in [16], candidates are not duplicated; so, there is no need to perform duplicate avoidance in the output.

- The kinds of predicates we allow in Q are more general compared to [14, 16]; in particular, we allow boolean combinations of predicates involving the operators or and not, nesting of predicates to arbitrary depths, and library functions like aggregations and the position function.

- Our algorithm can be extended to queries that involve the preceding and preceding-sibling axes inside the predicates, without increasing the memory space or runtime. This is an unique feature of our algorithm.

Our algorithm and those of [14, 16] can be used if D, instead of being streamed, is stored on a disk. When there are element-tag/atomic-value indexes on D, the $|D|$ in the space/runtime analysis denotes the sum of sizes of the streams returned by the indexes (after eliminating duplicates) for the vertices in Q.

Section 2 contains the preliminary definitions and notations we need. In Sections 3 and 4, we briefly describe the path stacks and our predicate checker, respectively. In Section 5, we describe our algorithm when all the location steps in Q have the descendant axis. In Section 6, we present the modifications to our algorithm, when some location steps in Q have the child axis. In Section 7, we present our conclusions.
2 Class of Queries, Output Order and SAX Events

An XPath query Q that we consider is of the form $L_1 L_2 \ldots L_n$, where each location step L_i is of the form $<axis> <node_test> <predicates>$. Axis is either / (for child) or // (descendant). Attributes are treated similarly to elements. This class of queries is defined by the following grammar:

$\langle query \rangle ::= \langle loc_step \rangle \mid \langle loc_step \rangle \langle query \rangle$
$\langle loc_step \rangle ::= \langle axis \rangle \langle node_test \rangle \langle predicates \rangle$
$\langle axis \rangle ::= / \mid //</
$\langle node_test \rangle ::= elem_label \mid attr_label \mid @*$
$\langle predicates \rangle ::= \epsilon \mid [\langle predicate \rangle]$
$\langle predicate \rangle ::= \langle predicate \rangle \text{ and } \langle predicate \rangle \mid \langle predicate \rangle \text{ or } \langle predicate \rangle \mid \text{not } \langle predicate \rangle \mid [\langle query \rangle] \mid \langle query \rangle \langle rel_op \rangle \text{ const}
$\langle rel_op \rangle ::= <= \mid > \mid \geq \mid \leq \mid =$

$\langle query \rangle$ indicates a relative query. Let axis(L_i), nodeTest(L_i) and predicate(L_i) denote the axis, node test and predicate in step L_i, respectively.

There is a problem in evaluating queries on XML streams. In the usual model, the output of an XPath query on an XML document consists of the document nodes that match the last location step L_n; these nodes are to be output in document order. But in the stream model, the order in which the nodes are found to belong to the output (based on the document piece seen so far) might not match the document order.

Example 2.1. Consider the result of the query $Q = /a[b]$ on the three XML documents in Figure 1. For all three documents, the output consists of nodes 1–4; typically, these four nodes should be output in the document order 1, 2, 3, 4. But when the documents are presented in streaming form, the order in which the four nodes are found to belong to the output might not match the document order. For Figures 1a, 1b and 1c, the nodes would be found to belong to the output in the order 1234, 4321 and 1342, respectively.

If we insist that the nodes be output in document order, then we have to buffer each output node, until its SAX event# (defined below) becomes the smallest among all candidates. This would result in the buffering of a large number of nodes that have already been found to belong to the output.

In practice, the desired output might be some function of the output nodes, such as an aggregate function (sum, count, etc), or an attribute value or text value of these nodes. For the reason given above, we assume that this function is order invariant; i.e., its value does not depend on the order in which its input arguments are presented.

The output of our algorithm is a sequence of pairs (label(e), event#), where label(e) is the label of an output element e, and event# is the SAX event number for the start tag of e. For each document element found to belong to the output, we will immediately output the corresponding pair. This can be easily modified, to compute any order invariant output function or to output entire elements.

As in [11], we use a SAX parser to read the XML document, and generate a stream of events of five types:

- startDocument()
- startElement(a, SAX event#), text(s), endElement(a), endDocument()

Event# is the SAX event number, and s is a data (string) value. We treat attributes similarly to elements; so, the label a above might be an element label or an attribute label. For example, the XML document $<c> 201 </c/>$ leads to the following sequence of SAX events:

- startDocument()
- startElement(a,1), startElement(@b,2), text(101), endElement(@b), startElement(c,5), text("201"), endElement(c), endElement(a), endDocument()

A document node (element or attribute) is born when its startElement is seen; it stays open until its endElement is seen, at which point it closes. A node is current if it is open, but none of its descendants is open; this is not affected by text events. All the open nodes lie on the unique path from the document root to the current node; this path is the current path.

3 Path Stacks

In this section, we describe the path stacks of [6]. Consider a query Q with no predicates. They use path stacks to compactly represent all possible embeddings of Q in the current path in D.

Example 3.1. Let $Q = /a//b/c//d$; in Figure 2a, child and descendant axes are represented by light and dark edges. Consider the current path $a_1 b_1 c_1 d_1 b_2 c_2 d_2$ (Figure 2c); we have used subscripts to distinguish between different elements with the same
Figure 2: Example 3.1: (a) Query Q, (b) Path Stacks, (c) Current path in D, (d) The Embeddings label. For $1 \leq i \leq 4$, S_i is the path stack for storing elements that are matches for location step L_i. The path stacks and the embeddings they represent are shown in the figure. Note that, since $axis(L_4) = /$, an embedding could use b_2 with either c_2 or c_1; but, since $axis(L_3) = /$, c_2 can only be used with b_2 (not with b_0 or b_1).

How our use of path stacks differs from that in [6]:

- Our location steps have predicates. So, we need to keep track of whether an element in a path stack S_i has satisfied/not-yet-satisfied $predicate(L_i)$; if the element fails $predicate(L_i)$, it is removed from S_i. We use the predicate checker (Sec 4) to determine when an element satisfies/fails a predicate.

- We are not interested in outputting the embeddings themselves, but only the nodes that are matches for the last location step; in Example 3.1, these are the d nodes that are matches for L_4. So, we do not need to maintain all possible paths. If a_1 satisfied $predicate(L_1)$ at the time a_2 was born, a_2 should not be pushed onto S_1; since $axis(L_2) = /$, any path that uses a_2 could instead use a_1. Pushing a_2 would hide a_1, thereby delaying the output of some d elements, and costing space.

- Elements that are possible matches for L_n are candidates for output. In Example 3.1, suppose that candidate d_2 satisfies $predicate(L_4)$. If element c_2 fails $predicate(L_3)$, then it is removed from S_3; since $axis(L_4) = /$, d_2 could try an alternate path consisting of c_1; so, d_2 is made to point to c_1. Suppose that c_2 satisfies $predicate(L_3)$. Then, when c_2 closes, d_2 should be moved to a different stack (candidate stack C_2 attached to S_2) from which it can directly point to b_2. Since $axis(L_3) = /$, if b_2 fails $predicate(L_2)$, d_2 should be moved to a different stack (candidate stack C_3 attached to S_3) and made to point to $c_1; c_1$ could provide alternate paths for d_2 to reach the output. This complication in the presence of child axes is handled in Section 6. It involves backtracking (ex. moving d_2 from C_2 to C_3), and is the intellectually hardest part of the paper: When Q contains a sequence of child axes steps, we need to store additional information with each candidate to allow backtracking.

4 The Predicate Checker

The predicate checker determines when a node in the path stacks has satisfied/failed each predicate in Q, using only $O(d|Q|)$ space and $O(|Q||D|)$ time. This predicate checker is similar to the bottom-up transducer in [19].

As per our grammar given in Section 2, a predicate could contain the boolean operators and, or and not. Such a predicate P can be represented by a tree $tree(P) = (V, A)$ where V is a set of vertices, and A is a set of arcs. Each vertex $v \in V$ has a type $\tau(v)$, and a boolean operator $bool(v)$ associated with it. $\tau(v) \in \Sigma \cup \{\ast\}$ is the element type of v. $bool(v) \in \{\text{and, or, not}\}$. Each arc $r \in A$ has an axis $axis(r)$ associated with it: $axis(r) \in \{\text{self, child, descendant}\}$. If v is a leaf vertex, optionally, there could be a “$<relOp>$ const” condition associated with v.

Example 4.1. For predicate $P = [./a[b] > 2] \text{ and } \neg c] / [a \text{ or } ./b]$, $tree(P)$ is shown in Figure 3. For each vertex v, the pair $(\tau(v), bool(v))$ is shown next to v; if $bool(v)$ is not specified, it should be taken to be and. For each arc r, $axis(r)$ is shown next to it: s, c, and d stand for self, child and descendant, respectively.

The predicate checker must consider the labels $bool(v)$ for each vertex v, and $axis(r)$ for each arc r. To avoid cluttering our description with these details, we describe our predicate checker only for predicates that do not contain the operators or and not; the extension to general predicates is tedious but straightforward. Some pointers are given later for not. Then, $bool(v) = \text{and}$ for each vertex; so it can be left out. Also, $axis(r)$ is either child or descendant for each arc. Let r be the arc from vertex j to vertex j'. If
there exists an embedding of desc.

Example 4.2. For $P = \ldots[./*[a \text{ and } ./*[b]]\ldots]$, tree$(P)$ is shown in Figure 4a.

In general, tree(P) is linear in $|P|$. From now onwards, we will not distinguish between P and tree(P).

to minimize confusion, we will use the terms vertices and arcs while referring to the components of P; nodes and edges refer to the components of D.

The predicate checker M is constructed from the forest $F = \{\text{tree}(\text{predicate}(L_i)) | 1 \leq i \leq n\}$. Let the vertices in F be numbered consecutively from 1 to m; $m = O(|Q|)$. M maintains a stack S of records. The records in S are constructed from the labels of records. The arrays are indexed from 1 to m. Let D_e denote the subtree rooted at e. For $1 \leq j \leq m$, let P_j denote the subtree rooted at vertex j in F. The arrays are defined as follows: At any instant,

$\text{S1} \text{ self}_e[j] = 1 \text{ if there exists an embedding of } P_j \text{ in the part of } D_e \text{ seen so far, with } j \text{ mapped to } e.$

$\text{C1} \text{ child}_e[j] = 1 \text{ if there exists an embedding of } P_j \text{ in } D_e, \text{ with } j \text{ mapped to some child of } e \text{ seen.}$

$\text{D1} \text{ desc}_e[j] = 1 \text{ if there exists an embedding of } P_j \text{ in } D_e, \text{ with } j \text{ mapped to some descendant of } e \text{ seen so far.}$

Example 4.3. Consider the evaluation of the predicate P shown in Figure 4b, on the document fragment shown in Figure 4b. The vertices in $F = \{\text{tree}(P)\}$ are numbered 1 to 7 (i.e., $m = 7$). After document node 3 closes, we have $\text{self}_1 = 0010010$, $\text{child}_1 = 0000110$ and $\text{desc}_1 = 0001111$. For example, $\text{self}_1[3] = 1$ because there exists an embedding of P_3 such that vertex 3 is mapped to node 1. $\text{child}_1[5] = 1$ because there exists an embedding of P_5 such that vertex 5 is mapped to node 3 (a child of node 1). $\text{desc}_1[7] = 1$ because there exists an embedding of P_7 such that vertex 7 is mapped to node 5 (a descendant of node 1).\n
Let us see how M operates on each of the five kinds of SAX events. After M processes each SAX event, the invariants $S1$, $C1$ and $D1$ stated above would hold at the current element.

$\text{startDocument: } S \text{ is initialized to empty. Current element is } f, \text{ with event#} = 0, \text{ self} = \text{ child} = \text{ desc} = 0.$

startElement: The record for the current element is pushed onto S. The newcurrent element e becomes the new current element, with $\text{self} = \text{ child} = \text{ desc} = 0$.

For each leaf vertex $j \in F$ such that $\text{label}(e)$ matches $\tau(j)$, and there is no "$<\text{relOp}>\text{const}$" condition associated with j, set $\text{self}[j] = 1$.

text: Let e be the current element. Consider a leaf $j \in F$ such that $\text{label}(e)$ matches $\tau(j)$, and there is a "$<\text{relOp}>\text{const}$" condition associated with j.

If the string value in the text event satisﬁes the condition at j, set $\text{self}[j] = 1$; additionally, if j is the root of some predicate(L_i), output that e has satisfied predicate(L_i).

endElement: Let e be the current element that is closing. For each predicate(L_i) whose root vertex $r \in F$ has $\text{self}_r[r] = 0$, output that e has failed predicate(L_i). Pop the top record from S; let it be record(e'); e' becomes the new current element. Update child$_{e'}$, desc$_{e'}$ and then set $\text{self}_{e'}$ as follows:

$\text{child}_{e'}[j] = \text{child}_{e'}[j] \lor \text{self}_{e'}[j]$,

$\text{desc}_{e'}[j] = \text{desc}_{e'}[j] \lor \text{self}_{e'}[j] \lor \text{desc}_{e'}[j]$

If $\text{self}_{e'}[j] = 0$ then set it to 1 if:

- $\text{label}(e')$ matches $\tau(j)$,
- for each c-child j' of j, $\text{child}_{e'}[j'] = 1$, and
- for each d-child j' of j, $\text{desc}_{e'}[j'] = 1$.

Also, if j is the root of some predicate(L_i), output that e' has satisfied predicate(L_i).

endDocument: Current element must be ‘/ ’, and S must be empty. Discard record$(’/’)$.

Now, let us see how to handle the not operator. Consider the predicate P in Figure 3. For a document node e, we have $\text{self}_e[6] = 1$ if $\text{self}_e[7] = 0$; so, $\text{self}_e[7]$ should be computed before $\text{self}_e[6]$, because of the self arc from vertex 6 to vertex 7.

A note about the output of M: For a SAX event, when M “outputs” that some element e has satisfied or failed a predicate L_i, it adds L_i to set L^T or L^F for e, respectively. L^T and L^F are sets of locations whose predicates are found to be true and false, respectively, at e, as a result of this SAX event. The pair (L^T, L^F) is returned to the stream processing algorithm described in Sections 5 and 6. For a general predicate (containing or and not), after processing a text SAX event, M outputs a pair $(L^T, L^F$) for the current element e.

For the endElement SAX event for e, M produces two (L^T, L^F) pairs: one for e, and another for its parent e'.\n
Figure 4: Examples 4.2–4.3: (a). $P = \ldots[./*[a \text{ and } ./c]/.*[a \text{ and } ./[b]]\ldots]$, (b). a document fragment
Resource requirements of M: The forest F takes space $O(|Q|)$. The stack S contains exactly the open document nodes. Each record in the stack needs space $O(d|Q|)$. So, the total space is $O(d|Q|)$. Now, consider runtime. Setting up the forest F takes time $O(|Q|)$. In the operation of M, each event takes $O(|Q|)$ time. We show this for endElement events; trivial for others. M spends $O(|Q|)$ time on the closing element e. On the new current element e', updating child and desc takes $O(|Q|)$ time. Updating self[e[j]] takes time proportional to outdegree(j) in F; over all $j \in F$, this takes $\sum_{j \in F} \text{outdegree}(j) = O(|Q|)$ time. So, M spends $O(|Q|)$ time for each endElement event. Since there are totally $O(|D|)$ events, runtime is $O(|Q||D|)$.

Theorem 4.1. The predicate checker M correctly determines when the current element in D has satisfied/failed each predicate in Q. It uses $O(d|Q|)$ space and $O(|Q||D|)$ time.

Proof. Note that M updates the arrays self, child, and desc only when e is the current element. Using induction on time, we can prove that invariants S1, C1 and D1 above hold for e, after M processes each SAX event. Correctness of M follows from S1.

The XPush machine [11] can be extended and used in place of our BUT, but it would need memory space and runtime exponential in $|Q|$. Also, unlike the XPush machine, our predicate checker can be extended to predicates that involve some XPath library functions, including aggregation and position; the contents of arrays self, child and desc will be more general (not boolean). It can also be extended to predicates that involve preceding and preceding-sibling axes. We believe that our predicate checker would be of use in other XML applications.

Our predicate checker can also be used to filter an XML document with respect to an XPath query. For filtering, an XPath query is just a predicate on the document root: For example, //a[b] ≡ /a[b], and //a[b] ≡ /[]/a[b]. So, an XML document D passes the filter iff self[v] = 1 at the document root, where v is the root of the query tree. Our predicate checker can determine this using $O(d|Q|)$ bits of space and $O(|Q|\sum_{i=0}^{n} l_i)$ time. [3] considered the class of univariate XPath queries; this is same as the class of queries we consider in this paper (see Section 2). They presented a filtering algorithm that uses $O(r|Q|(\log |Q| + \log d))$ space and $O(r|Q|\sum_{i=0}^{n} l_i)$ time; r denotes the “recursion depth” of D with respect to Q, $1 \leq r \leq d$. Our algorithm is faster by a factor of $\Theta(r)$, allowing faster streaming. For memory space, there are instances where our algorithm is better, and vice versa. It is well-known that most real life XML documents have small depth. So, our algorithm is definitely competitive with theirs, in terms of memory space, in most cases of interest. Also, our algorithm is lot simpler.

5 Our Algorithm When There Are No Child Axes

In this section, we present our algorithm for evaluating Q on D, when all the location steps in Q have the descendant axis; Section 6 contains modifications for handling child axis steps. Note that we are not concerned about the axes inside the predicates attached to these location steps; the predicate checker in Section 4 handles those axes.

Detailed pseudo code for our algorithm is given in the Appendix; important parts are given below. In each line, the character sequence `/***` precedes comments. Procedures PStartDocument, PStartElement, PText and PEndElement are called in response to SAX events startDocument, startElement, text and endElement, after the predicate checker (Section 4) has processed the event.

Our algorithm uses path stacks and candidate stacks. Candidate stacks contain candidate nodes for output; these are elements that are possible matches for L_i. The path stacks together maintain a compact representation of the possible paths; consisting only of open nodes, that a candidate could take to reach the output (or be discarded along the way if all relevant paths fail). Each such path of length i is a possible match for $L_1 L_2 \cdots L_i$, subject only to the satisfaction of the predicates in each location step.

We first describe the path stacks. There are n path stacks: For $1 \leq i \leq n$, path stack S_i corresponds to location step L_i; it contains open nodes that are possible matches for L_i. The nodes in S_i, from the bottom of the stack to the top, lie on the current path. The same open node might be in several path stacks, and some open nodes might not be in any path stack.

Let top(S_i) denote the top record in S_i, and let T_i denote the pointer to top(S_i). The variable nempty keeps track of the last nonempty path stack: $S_1, S_2, \ldots, \text{nempty}$ are all nonempty. Procedure PStartDocument initializes the path stacks, candidate stacks, their top pointers, and the variables nempty and satUpto (defined later).

A document node e is pushed onto a path stack only when e is newbourn; i.e., the most recent SAX event is the startElement event for e. Procedure PStartElement pushes e onto S_i iff it satisfies three conditions:

1. e passes nodeTest(L_i)
2. e has an ancestor element in S_{i-1}. If we proceed in decreasing order of i, then this condition is satisfied iff S_{i-1} is nonempty; i.e., $i \leq \text{nempty} + 1$.
3. e is not redundant in S_i. This is an optimization measure that will be explained later.

When the procedure pushes e onto S_i, it actually pushes the record $R_i(e) = (\text{label}(e), \text{event}\#, \text{predStatus}, \text{leftPtr})$. PredStatus is either True or Unknown, indicating whether node e has already-satisfied/not-yet-satisfied
predicate(L_i), respectively; $R_i(e)$ is popped from S_t when e fails predicate(L_i), or when e closes. $LeftPtr$ is the value of T_{t-1} when $R_i(e)$ is pushed onto S_t, and after that its value stays constant; it points to the top most element of S_{t-1} that is an ancestor (not self) of e. In what follows, when we say “element e in S_t”, we actually mean the record $R_i(e)$.

Let e be an element in S_1, S_1, S_2, \ldots, S_t together provide a compact representation of a set $Paths(i, e)$ of paths that are possible matches for $L_1 L_2 \cdots L_i$. The last node on the path (i.e., possible match for L_i) is either e or one of the nodes below it in S_t; let it be some node e'. Then the second last node on the path (i.e., possible match for L_{t-1}) is either the element f in S_{t-1} that $R_i(e').leftPtr$ points to, or one of the elements below f in S_{t-1}; and so on. Some of these nodes already satisfy their corresponding predicates (i.e., have predStatus = True), while others have not (i.e., have predStatus = Unknown). If all the nodes on one of the paths in $Paths(i, e)$ satisfy their corresponding predicates, then that path becomes an actual match for $L_1 L_2 \cdots L_i$.

Let $P' = (e'_1, e'_2, \ldots, e'_j)$ and $P = (e_1, e_2, \ldots, e_i)$ be two paths in $Paths(i, e)$; for $1 \leq j \leq i$, $e_j, e'_j \in S_j$. We say that P' is below P (denoted $P' \preceq P$) if e'_j is either same as e_j or is below e_j in S_j, for $1 \leq j \leq i$; i.e., each element e'_j in P' is an ancestor-or-self of the corresponding element e_j in P. The following fact characterizes redundant paths.

Fact 5.1. If $P' \preceq P$ and P' is an actual match for $L_1 L_2 \cdots L_i$, $i < n$, then P is an actual match that can use P to reach the output can instead use P' and reach the output right away.

Example 5.1. Suppose that, in Figure 2, we change axis(L_3) from child to descendant; so, all the four location steps have the descendant axis. The contents of path stacks remain as before. But $Paths(4, d_2)$ now consists of the six paths shown in Figure 2d, and the five additional paths $a_2b_1c_2d_2, a_1b_1c_2d_2, a_1b_2c_1d_2, a_2b_1c_1d_2$. $a_2b_1c_1$ is below $a_2b_2c_2$. So, if $a_2b_1c_1$ is an actual match for $L_1 L_2 L_3$, then $a_2b_2c_2$ is redundant: Any candidate, such as d_2, that is waiting on the paths in $Paths(3, c_2)$ to reach the output, can use $a_2b_1c_1$ and reach the output right away.

To avoid storing redundant paths, and to recognize an actual match when there is one, we introduce the variable satUpto (abbreviation for “satisfied upto”). It is the largest integer such that: For $1 \leq i \leq satUpto$, top(S_i) satisfies predicate(L_i) and points to top(S_{t-1}).

Fact 5.2. The top elements of stacks $S_1, \ldots, S_{satUpto}$ form an actual match for $L_1 L_2 \cdots L_{satUpto}$. There are two consequences: For $1 \leq i \leq satUpto$,

- Any candidate that could use any of the paths in $Paths(i, top(S_i))$ to reach the output can go to the output right away.

- No need to push any element on S_t.

The second item in Fact 5.2 deals with avoiding redundancy in the prefix $S_1, S_2, \ldots, S_{satUpto}$. This does not apply to S_n, as candidates can not be redundant.

Redundancy can also arise at S_t, satUpto $< i < n$, as follows. Suppose that $R_i(e).leftPtr = T_{t-1}$. Then pushing an element e above e', in S_t, is redundant; in an actual match that uses e, e can be replaced by e'.

Example 5.2. Consider Figure 2 (with axis(L_3) = //). First, let us consider avoiding redundancy in $S_1 S_2 \cdots S_{satUpto}$. Suppose that at the time b_2 is born, a_2 and b_1 satisfy predicate(L_1) and predicate(L_2), respectively; so satUpto ≥ 2. Then b_2 is redundant in S_2, and should not be pushed onto S_2.

Now, consider avoiding redundancy past $S_{satUpto}$. At the time b_2 is born, suppose that a_1 and a_2 have not yet satisfied predicate(L_1); so satUpto $= 0$. Also, suppose that b_1 satisfies predicate(L_2). Then b_2 is redundant in S_2.

For satUpto $< i < n$, redundancy in S_i is avoided by using the procedure notRedPush(i, R) (code sketched). It does not push R onto S_i if top(S_i). predStatus = True and top(S_i).leftPtr = T_{i-1}.

Lemma 5.1. Procedure PStartElement pushes a new-born element e onto the appropriate path stacks S_t, while avoiding redundancy.

Proof. The procedure pushes e onto S_t for which the three conditions enumerated at the beginning of this section are met. For $i < n$, the third condition (“e is not redundant in S_t”) translates to restricting $i \succ satUpto$, and using the procedure notRedPush. For $i = n$, there is no concept of redundancy: e is either output (if e is already found to belong to the output) or it is pushed onto S_n.

Now, let us consider candidates and candidate stacks. Candidates start their candidacy in S_n: S_n contains open nodes that are possible matches for L_n, and these are all candidates for output. For an element e in S_n, its $leftPtr$ gives the set of paths $Paths(n - 1, *R_n(e).leftPtr)$ that e could take to reach the output (*p denotes the dereferencing of pointer p).

Fact 5.3. An element e in S_n should eventually reach the output iff the following conditions are satisfied:

1. e satisfies predicate(L_n).
2. Any one path in $Paths(n - 1, *R_n(e).leftPtr)$ becomes an actual match for $L_1 L_2 \cdots L_{n-1}$.

If e in S_n fails condition 1), its candidacy dies, and it is popped from S_n and discarded. Let e meet condition 1). If, at the time condition 1) is met, condition 2) is also met (i.e., satUpto = $n - 1$ and $R_n(e).leftPtr = T_{n-1}$), then e is output immediately (this results in failing the conditions to be met to increment satUpto to n; so, satUpto $< n$ always). If condition 2) is not
met at that time then, by Fact 5.5 below, condition 2) can not be met until e closes; e is kept in \(S_n \) until e closes, and then e is moved to candidate stack \(C_{n+1} \).

Example 5.3. In Figure 2b, consider the following scenarios:

- \(d_2 \) fails predicate(\(L_4 \)): \(d_2 \)’s candidacy dies; it is popped from \(S_4 \) and discarded.
- \(\text{satUpto} = 3 \) when \(d_2 \) satisfies predicate(\(L_4 \)): \(\text{Top}(S_1) \text{top}(S_2) \text{top}(S_3) = a_2b_2c_2 \) is an actual match for \(L_1L_2L_3 \). \(d_2 \) is popped from \(S_4 \) and output.
- \(\text{satUpto} < 3 \) when \(d_2 \) satisfies predicate(\(L_4 \)): No path in \(\text{Paths}(3,e_2) \) is currently known to be an actual match for \(L_1L_2L_3 \). Then, none of these paths can become an actual match for \(L_1L_2L_3 \) until \(d_2 \) closes. \(d_2 \) is kept in \(S_4 \) until \(d_2 \) closes, and then moved to candidate stack \(C_3 \) attached to \(S_3 \), with its \(\text{pathPtr} \) pointing to \(e_2 \).

For \(1 \leq i < n \), \(C_i \) is the candidate stack attached to \(S_i \). The \(C_i \)s together contain all closed elements that are candidates (open candidates are in \(S_n \)). Also, the \(C_i \)s are disjoint: No candidate appears in two or more \(C_i \)s simultaneously. An element e in \(C_i \) is represented by the record \(R_i(e) = (\text{label}(e), \text{event#}, \text{pathPtr}) \), where \(\text{pathPtr} \) is the value of \(T_i \) when e is pushed onto \(C_i \). In actuality, we group all the elements in \(C_i \) that have the same value for \(\text{pathPtr} \) (they must be contiguous in \(C_i \)) into a bunch with a single \(\text{pathPtr} \).

Fact 5.4. Let Bunch be a bunch of candidates in \(C_i \) that have the same value for \(\text{pathPtr} \). All the candidates in Bunch are relying on the same set of paths \(\text{Paths}(i, \ast \text{pathPtr}) \) to reach the output. All these candidates should be output iff (and when) some path in \(\text{Paths}(i, \ast \text{pathPtr}) \) becomes an actual match for \(L_1L_2 \ldots L_i \); this happens exactly when \(\text{satUpto} = i \) and \(\text{pathPtr} = T_i \).

Bunches can be combined/moved-to-\(C_{i-1} \)/output/discarded, but a bunch can never be split. Let \(\text{topBunch}(C_i) \) denote the top bunch in \(C_i \). Let us consider changes to \(\text{top}(S_i) \) and \(\text{topBunch}(C_i) \), based on the operations of the predicate checker, following a SAX event. Recall that the predicate checker always operates on the current node. In our path stacks also, we always operate only on the current node. We have the following.

Fact 5.5. Whenever we push/pop/access/modify /delete the record pertaining to an element e, in any path stack, e must be the current element. None of e’s descendants is open. So, if e is in any path stack, it must be the top element of that stack; also, no element from the next path stack can point to it (thru \(\text{leftPtr} \)).

As explained in Section 4, \(L^T \) and \(L^F \) are sets of location steps whose predicates become \(\text{True} \) and \(\text{False} \), respectively, at current element e, as a result of

procedure PStartElement(a, event#)

/*Push new element onto appropriate path stacks for each i, satUpto < i \leq \text{nempty} + 1, such that a matches nodeTest(\(L_i \)), in \(\downarrow \) order of i, do /
/**All descendants of this new element are unborn.*/
if (\(i = n \))
 then if predicate(\(L_n \)) = \text{nil}
 then if satUpto = \(n - 1 \)
 then output (a, event#)
 else push(\(S_n, (a, event#, \text{True}, T_{n-1}) \))
 else push(\(S_n, (a, event#, \text{Unknown}, T_{n-1}) \))
 else if predicate(\(L_i \)) = \text{nil}
 then notRedPush(i, (a, event#, \text{True}, T_{i-1}))
 if \(i = \text{satUpto} + 1 \) then satUpto + 1;
 else notRedPush(i, (a, event#, \text{Unknown}, T_{i-1}))
/**and top(S_i).predStatus = Unknown.
if ((\(i < n \)) and (topBunch(C_i).pathPtr = T_i))
 then bunch ← popBunch(C_i) else bunch ← φ;
 pop(S_i)
 if ((\(T_i \) ≠ \text{nil}) and (bunch ≠ φ))
 then pushBunch(i, bunch)
/**and top(S_i).predStatus = Unknown.*/
for each \(i \) such that \(L_i \in L^F \) and top(\(S_i \)) = \(R_i(e) \) do
/**satUpto < i \leq \text{nempty}/**
if ((\(i < n \)) and (top(\(S_i \)).predStatus = Unknown.)
 then top(\(S_i \)).predStatus ← \text{True}
 if ((\(i = n \)) and (satUpto = \(n - 1 \)) and
 (top(\(S_n \)).leftPtr = T_{n-1}))
 then pop and output top(\(S_n \));
 go to the next pass of the for loop
 if ((i = satUpto + 1) \(\land \) (top(\(S_i \)).leftPtr = T_{i-1}))
 then satUpto++;
 if topBunch(C_i).pathPtr = T_i
 then pop and output topBunch(C_i)
/**e is closing;/**
/**delete e (predStatus = \text{True}) from all path stacks for each \(i \) s. t. top(\(S_i \)) = \(R_i(e) \), in \(\uparrow \) order of i, do /*
/**1 \leq i \leq \text{nempty}/**
/**Top(S_i).leftPtr = T_{i-1}/** (because of \(\uparrow \) order of i).*/
if (\(i = n \))
 then pop(\(S_n \))
 pushBunch(n - 1, (\text{label}(e), \text{event#}, T_{n-1}))
 else if topBunch(C_i).pathPtr = T_i
 then bunch ← popBunch(C_i)
 pushBunch(i - 1, bunch)
 pop(S_i); if i = satUpto then satUpto --
processing the most recent text or endElement SAX event. These sets are computed and returned by
the predicate checker. Consequently, there are three possible cases pertaining to \(e \) in \(S_i \):

- \(e \) fails predicate \((L_i)\). See procedure deleteFalse. \(e \) is no longer a possible match for \(L_i \), and should be popped from \(S_i \). TopBunch \((C_i)\), if pointing to \(e \) thru pathPtr, should have its pathPtr set to the
new value of \(T_i \); this could result in merging this bunch with the one below it in \(C_i \), if both these
bunches have the same value for pathPtr. If \(S_i \) is empty after popping \(e \), topBunch \((C_i)\) should be popped from \(C_i \) and discarded, emptying \(C_i \).

- \(e \) satisfies predicate \((L_i)\). See procedure setTrue. Set \(R_i(e).predStatus = True \). If satUpto =
\(i - 1 \) and \(R_i(e).leftPtr = T_i-1 \), then increment satUpto; the top elements of \(S_1 S_2 \cdots S_i \) form an actual match for \(L_1 L_2 \cdots L_i \); if topBunch \((C_i)\).pathPtr = \(T_i \), then pop and output
all the elements in that bunch. Else no change to topBunch \((C_i)\); in particular, we do not yet
move this bunch to \(C_i-1 \), because it will not be the top bunch in \(C_i-1 \) if \(e \) is also in \(S_i-1 \).

- \(e \) closes. We must have \(R_i(e).predStatus = True \). See procedure deleteTrue. We delete \(e \) from \(S_i \),
in increasing order of \(i \). If topBunch \((C_i)\).pathPtr
was pointing to \(e \), then, since \(e \) is a match for \(L_i \),
we move this bunch from \(C_i \) to \(C_i-1 \). Decrement satUpto, if necessary, to reflect the deletion of \(e \).

Example 5.4. Continuation of Example 5.3 (third scenario). \(d_2 \) has been moved to \(C_5 \), with its pathPtr
pointing to \(c_2 \). Consider three cases for \(c_2 \):

- \(c_2 \) fails predicate \((L_3)\): \(c_2 \) is popped from \(S_3 \). \(d_2 \) in \(C_3 \) now points to \(c_1 \). \(b_2 \) closes with or without
satisfying predicate \((L_2)\), and is popped from \(S_2 \). If \(d_1 \) fails predicate \((L_4)\), it
is popped from \(S_4 \) and discarded. Suppose that \(d_1 \) passes predicate \((L_4)\). When \(d_1 \) closes, it
is moved to \(C_3 \), forming a single bunch with \(d_2 \), with their pathPtr pointing to \(c_1 \).

- satUpto = 2 and \(c_2 \) passes predicate \((L_3)\):
satUpto is incremented to 3; this indicates that
top \((S_1)\)top \((S_2)\)top \((S_3)\) = \(a_2 b_2 c_2 \) is an actual
match for \(L_1 L_2 L_3 \). Since \(d_2.pathPtr = T_3 \), \(d_2 \)
output.

- satUpto < 2 and \(c_2 \) passes predicate \((L_3)\):

top \((S_3)\).predStatus is set to true; no change to \(C_3 \)
i.e., \(d_2 \). When \(c_2 \) closes, it is popped from \(S_3 \). Only then \(d_2 \) is moved from \(C_3 \) to \(C_2 \), with its
pathPtr pointing to \(b_2 \).

Lemma 5.2. Procedures deleteFalse, setTrue and
deleteTrue correctly handle the three cases itemized
to Example 5.4, respectively.

Following a text event, the predicate checker
returns a pair \((L^T, L^F)\) for the current element \(e \)
(see Section 4). Then, procedure PText processes
the changes at \(e \) using procedures deleteFalse and
setTrue. Following an endElement event, the
predicate checker returns a pair \((L^T, L^F)\) for the closing
element \(e \), and another pair for its parent \(e' \) (see
Section 4). Procedure PEndElement first processes the
changes at \(e \), using procedures deleteFalse, setTrue and
deleteTrue. Then, it process the changes at \(e' \)
using procedures deleteFalse and setTrue.

Procedure popBunch \((C_i)\) (code not given) pops and returns topBunch \((C_i)\). Procedure
pushBunch \((i, bunch)\) pushes bunch on \(C_i \) after,
if necessary, merging it with topBunch \((C_i)\).

Lemma 5.3. Procedures PText and PEndElement
correctly process the changes resulting from a text
and an endElement event, respectively.

Resource requirements of our algorithm: We have already seen the requirements for the predicate
checker. Now, consider path stacks and candidate
stacks. First, consider memory space. In the worst
case, each open node could be in each path stack;
space required for path stacks is \(O(n) \). The candidate
stacks contain one copy of each candidate; worst case
space required is \(O(c) \). So, the overall memory space
required (including space for the predicate checker) is
\(O(d(Q) + c) \).

Now, consider runtime. We spend \(O(1) \) time for
each element \(e \), in each path stack; the worst case time
spent on path stacks is \(O(n) \). For each candidate \(e \),
time spent on candidate stacks is proportional to the
number of different values its pathPtr takes \((\leq d)\);
this includes the movement of \(e \) from \(C_i \) to \(C_i-1 \),
as the target of its pathPtr varies from \(S_i \) to \(S_i-1 \). So,
the overall worst case runtime, including the runtime
of the predicate checker, is \(O(\left| Q \right| + d) \). It is not
much worse than the runtime \(O(\left| Q \right|) \) of the best
in-memory algorithms \([9, 17]\) that use \(\Theta(\left| D \right|) \) memory
space. So, our algorithm is runtime competitive with
these algorithms, while using much less memory space.

Theorem 5.1. The algorithm described in this
section correctly evaluates an XPath query \(Q \) on a
streaming XML document \(D \), when all the location
steps in \(Q \) have the descendant axis. The algorithm
uses \(O(\left| Q \right| + c) \) space and \(O(\left| Q \right| + d) \) time.

Proof. The correctness proof follows from Facts 5.1 to
5.5 and Lemmas 5.1 to 5.3.

6 When There Are Child Axes

In this section, we consider the modifications needed
in our algorithm, when some location steps have the
child axis. This is the intellectually hardest part.

First, consider the modifications pertaining to path
stacks. In the previous section, we saw that a newborn
element \(e \) is pushed onto a path stack \(S_i \) if it satisfies
three conditions. The second condition is modified as
follows:
that could use any of the paths in

If

satUpto

value; such elements are

a path stack

quantum jumps. As before, pushing an element onto

i

(e

ending in

paths in

are possible matches for

L_1 L_2 \cdots L_i is redefined to account for /

axes. For an example, see Figure 2.

The concept of redundancy is also tightened; i.e.,

fewer cases of redundancy. In the previous section,

for two paths

P, P' \in Paths(i, e), if

P' \preceq P and

P

is an actual match for

L_1 L_2 \cdots L_i, then

P is redundant.

Now, for

P to be redundant,

axis(L_{i+1}) must be /

So, we allow pushing elements (onto path stacks)

above an actual match of length

i

if

axis(L_{i+1}) = /

To recognize actual matches of length

i

if

axis(L_{i+1}) = /

we augment the record

R_i(e)

in a path stack with the boolean field

actualMatch:

R_i(e).actualMatch = True

iff there exists a path ending in

e

in

Paths(i, e) that is an actual match for

L_1 L_2 \cdots L_i; inductively,

R_i(e).actualMatch =

(\star(R_i(e).leftPtr).actualMatch and

R_i(e).predStatus).

If

R_i(e).actualMatch = True, then any candidate

that could use any of the paths in

Paths(i, e) to reach

the output can go to the output right away.

The variable

satUpto

is redefined as the largest integer

i

that satisfies the following conditions:

- top(S_i).actualMatch = True
- axis(L_{i+1}) = /

Because of the second condition,

satUpto

moves in quantum jumps. As before, pushing an element onto

a path stack

S_i, for

i \leq satUpto, is redundant. But

there could be elements pushed above elements

on an actual match, before

satUpto

jumped to its current value; such elements are

not redundant.

Example 6.1. Let

Q = /a//**//**//****,

where predicates are present but not shown. In Figure 5, we

show three different embeddings of

L_1 L_2 \cdots L_5

in the current path to node

I

(L_0 is irrelevant to our discussion here). Numbers

1 thru 5 are indices of location steps

L_1 thru

L_5, and upper case letters

A

through

I

are
document node ids. Since

axis(L_0) = /,

the contents of path stacks

S_1, S_2, \ldots, S_5

could be as shown only if

R_5(G).actualMatch = R_5(E).actualMatch = False.

Recall that newborn nodes are considered for insertion

in

S_i, in decreasing order of

i.

Suppose that

R_5(G).actualMatch is True

when

G

is pushed onto

S_5.

CDEFG is an actual match for

L_1 L_2 \cdots L_5;

satUpto

jumps from

0

to

5.

Then we would not push

G

onto

S_3, as it is redundant; consequently, we

would not push

H

and

I

onto

S_4

and

S_5,

respectively.

But

R_1(E)

and

R_2(F)

were pushed (possibly with

predStatus = Unknown)

before

satUpto

jumped from

0
to

5.

They are not redundant for the following reason:

When

G

closes,

R_5(G)

is popped. The next new
generation

G'

we see could be a sibling of

G.

G'

might fail

nodeTest(L_5)

or

predicate(L_5),

so candidates

that are descendants of

G'

cannot use

CDEFG'

as an actual match, to reach the output. But

G'

might pass

nodeTest(L_3)

and get pushed onto

S_5; so, some of those candidates could rely on a possible path

consisting of

EFG'

(as match for

L_1 L_2 L_3).

Now, consider avoiding redundancy past

S_{satUpto}

(i.e., in

S_i, satUpto < i < n),

using the procedure

notRedPush(i, R).

At any time, at most one child

dead

node

of an open node is open. So, the condition

top(S_i).leftPtr = T_{i-1}

in the procedure can hold only if

axis(L_i) = /;

so, this procedure needs to be called

only in this case.

Now, let us consider the modifications pertaining
to candidate stacks. As before, a candidate

e

in

S_i

should reach the output iff (and when) the following two conditions are satisfied:

1.

e

satisfies

predicate(L_i).

2.

Any one path in

Paths(n-1, \star(R_n(e).leftPtr))

becomes an actual match for

L_1 L_2 \cdots L_n-1.

The only difference is in how we test if condition

2

is met, at the time condition 1) is met:

\star(R_n(e).leftPtr).actualMatch = True.

In Section 5, an element

e

in

C_i

was represented by the record

R^\prime_i(e) = (label(e), event#_pathPtr).

If there is no index

k

such that

axis(L_{k+1}) = /;

there is no change to this record. Else, let

k

be the smallest such index. Now, we add the additional field

stackSeq
to

R^\prime_i(e)

. This field and its use constitute the technically hardest part of this paper.

StackSeq

is a variable length sequence of some stack indices

j,

i \leq j \leq k;

it keeps track of alternate possible paths for

e

to reach the output. Whenever we process

R^\prime_i(e),

the top elements of all the stacks whose indices are in its

stackSeq

field are the same document element.
Example 6.2. Continuing with Example 6.1, suppose that satUpto stays at 0, and at some point we have three embeddings of L_1, L_2, \ldots, L_5 in the current path to node I as shown in Figure 5. Recall that $\text{axis}(L_0) = //$. Since satUpto = 0, the actualMatch field must be False for all three records in S_5. For any element in C_5, its stackSeq is (5). Suppose that for the top element e in C_5, $R_5'(e).\text{pathPtr} = T_5$ (i.e., $R_5'(e)$ is pointing to $R_5(I)$). If G fails $\text{predicate}(L_3)$ then, since $\text{axis}(L_0) = //$, e could try the path ending in $R_5(G)$; so, we will pop $R_5(I)$ and set $R_5'(e).\text{pathPtr}$ to the new value of T_5, just as in the previous section. Instead, suppose that I satisfies $\text{predicate}(L_3)$. e will stay in C_5 until I closes, and then e would be moved to C_4, with its pathPtr pointing to $R_4(H)$ and stackSeq = (4). If H fails $\text{predicate}(L_4)$, it would be popped from S_4; instead of just changing $R_4'(e).\text{pathPtr}$ to the new value of T_4 as done in the previous section, we have to move e to C_5 with pathPtr pointing to $R_5(H)$ and stackSeq = (5). Instead, suppose that H satisfies $\text{predicate}(L_4)$. e will stay in C_4 until H closes, and then e would be moved to C_5, with pathPtr pointing to $R_5(G)$, and stackSeq = (5). Note that G might not stay as the top element in S_5, as for example, if we next push a sibling H' of H onto S_4, and then push a child I' of H' onto S_5; we still do not need to store a pointer to $R_5(G)$ in $R_5'(e)$. The reason for this: Next time we want to process $R_5'(e)$, G will again be the current element, and be the top element in S_3 and S_5 (Fact 5.5).

When G is the current element, consider the following possibilities after a SAX event:

- G satisfies $\text{predicate}(L_3)$ but does not yet fail $\text{predicate}(L_3)$. Set $R_3(G).\text{predStatus} = \text{True}$; if G also satisfies $\text{predicate}(L_3)$ then set $R_3(G).\text{predStatus} = \text{True}$. If $R_3(G).\text{actualMatch}$ becomes True, increment satUpto to 5, pop and output $R_3'(e)$, and pop $R_3(G)$ as it is redundant. Else if $R_3(G).\text{actualMatch}$ becomes True, then pop and output $R_3'(e)$.

- G satisfies $\text{predicate}(L_3)$ but fails $\text{predicate}(L_3)$. Set $R_3(G).\text{predStatus} = \text{True}$ and pop $R_3(G)$. Pop e from C_3 and push it onto C_5, with stackSeq = (5). If $R_3(G).\text{actualMatch}$ becomes True, increment satUpto to 5, pop and output e.

- G fails $\text{predicate}(L_3)$ but does not yet fail $\text{predicate}(L_3)$. Pop $R_3(G)$; if topBunch(C_5) was pointing to it, then make it point to $R_3(E)$. Delete 5 from $R_5'(e).\text{stackSeq}$; it becomes (3). If G passes $\text{predicate}(L_3)$, set $R_3(G).\text{predStatus} = \text{True}$; if $R_3(G).\text{actualMatch}$ becomes True, then pop and output e.

- G fails $\text{predicate}(L_5)$ and $\text{predicate}(L_3)$. Pop $R_3(G)$ and $R_5(G)$. If topBunch(C_5) was pointing to $R_5(G)$, then make it point to $R_3(E)$. Move e from C_3 to C_5, with pathPtr pointing to $R_3(E)$ and stackSeq = (5).

Now, consider the situation when G closes with at least one of $\text{predicate}(L_5)$ and $\text{predicate}(L_3)$ being True. We have the following cases:

- Both $\text{predicate}(L_5)$ and $\text{predicate}(L_3)$ are True. e is moved from C_3 to C_2, with pathPtr pointing to $R_2(F)$ and stackSeq = (2, 4) (i.e., pointing to $R_2(F)$ and $R_3(F)$).

- Only $\text{predicate}(L_5)$ is True. e is moved from C_3 to C_4, with pathPtr pointing to $R_4(F)$ and stackSeq = (4).

- Only $\text{predicate}(L_3)$ is True. e is moved from C_3 to C_2, with pathPtr pointing to $R_2(F)$ and stackSeq = (2).

In all the three cases above, if the new top(S_j) is F (in our example, it is E), then 5 would be appended to $R'(e).\text{stackSeq}$.

As in the previous section, we group all elements in C_i that have the same value for pathPtr and stackSeq (they must be contiguous in C_i) into a bunch with a single pathPtr and stackSeq. All elements in a bunch are relying on the same set of paths to reach the output. If any one of these paths becomes an actual match, then the entire bunch is output.

Because of the second condition for bunching elements in C_i (namely, they must have the same stackSeq), there could be several contiguous bunches at the top of C_i with pathPtr = T_i. When there is a change in top(S_j) due to a SAX event, each of these bunches must be handled separately, based on its stackSeq: bunches that end up with the same pathPtr and stackSeq, after the SAX event, must be combined.

Now, we give a general description of how to handle bunches and their stackSeq. Each stackSeq is kept sorted in increasing order. For any bunch in C_i where axis$(L_{k+1}) = //$, its stackSeq is (re)initialized to (k). Consider a bunch in C_i where axis$(L_{k+1}) = //$, and k is the smallest integer greater than i such that axis$(L_{k+1}) = //$. Its stackSeq is an increasing sequence of some integers $j, i \leq j \leq k$; also i is the first (smallest) element of this sequence. Whenever we are processing this bunch, top(S_j), for all $j \in \text{stackSeq}$, correspond to the same document element, namely the current element, say X. If top$(S_j).\text{actualMatch} = \text{True}$ for any $j \in \text{stackSeq}$, then the bunch is popped and output; also if $k \in \text{stackSeq}$ and top(S_k). actualMatch = True, then increment satUpto to k and pop X from S_j for all $j < k$, as they are redundant. Else, when X closes, the bundle is updated:

- For each $j \in \text{stackSeq}$: If X satisfied $\text{predicate}(L_j)$, replace j by $j - 1$; else delete j.

After the previous step: If stackSeq is empty, set stackSeq \(= (k) \); if \(S_k \) is empty, discard bunch. Else (i.e., stackSeq is not empty) if parent\((X)\) is in top\((S_k)\), append \(k \) to stackSeq.

- Move bunch to candidate stack \(C_m \), where \(m \) is the first element of the new stackSeq.

Resource requirements of the modified algorithm: The only change, compared to the analysis in the previous section, pertains to candidate stacks, for maintaining the stackSeqs. The length of any stackSeq is bounded by the maximum number of location steps (all with child axis) in between two successive location steps with descendant axis. Using the trivial upper bound of \(n \) for this, the space for candidate stacks is \(O(cn) \), and the time spent on candidate stacks is \(O(\frac{d+n^2}{D}) \). So, the overall memory space and runtime required, in the worst case, are \(O(d[Q] + cn) \) and \(O(\frac{|Q| + d + n^2}{D}) \), respectively.

Theorem 6.1. The algorithm described in this section correctly evaluates an XPath query \(Q \) on a streaming XML document \(D \). The algorithm uses \(O(d[Q] + cn) \) space and \(O(\frac{|Q| + d + n^2}{D}) \) time in the worst case.

7 Conclusions

We presented an efficient algorithm for evaluating an XPath query \(Q \) (involving only child and descendant axes) on a streaming XML document \(D \). Several previously known algorithms for this problem use exponential space and time, in the worst case. Our algorithm uses polynomial space and time. Also, our algorithm is runtime competitive with the in-memory algorithms, while using much less memory space.

We presented a novel predicate checker that would be of use in other XML applications involving XPath. It can be extended to predicates that also involve the preceding and preceding-sibling axes. Our XPath evaluation algorithm can also be extended to queries containing such predicates, without increasing the memory space or runtime.

References

APPENDIX

For the case when \(\text{axis}(L_i) = // \), for all steps \(L_i \)

procedure PStartDocument()

Initialize path stacks \(S_1, S_2, \ldots, S_n \) to be empty.

Initialize their stack top pointers \(T_1, T_2, \ldots, T_n \) to nil.

Initialize candidate stacks \(C_1, C_2, \ldots, C_{n-1} \) to empty.

Initialize their top pointers \(T'_1, T'_2, \ldots, T'_{n-1} \) to nil.

\(\text{nempty} = 0 \); \(\text{satUpto} = 0 \);

/** \(S_1, \ldots, S_{n\text{empty}} \) are the only nonempty path stacks.

/** We will not show the updating of \text{nempty}.

/**For \(1 \leq i \leq \text{satUpto} \),

/** \(\text{top}(S_i).\text{predStatus} = T \land \text{top}(S_i).\text{leftPtr} = T_{i-1} \).

**procedure PStartElement(a, event#)

/** Push new element onto appropriate path stacks

for each \(i \), \text{satUpto} < i \leq \text{nempty} + 1,

such that a matches \text{nodeTest}(L_i) \), in \(\downarrow \) order of \(i \), do

/** All descendants of this new element are unborn.

/** So, currently, no element from either \(S_{i+1} \) or \(C_i \)

/** needs to point to this element.

if \(i = n \)

then if \(\text{predicate}(L_n) = \text{nil} \)

then if \(\text{satUpto} = n - 1 \)

then output \((a, \text{event#}) \)

else \(\text{push}(S_n, (a, \text{event#}, \text{true}, T_{n-1})) \)

else \(\text{push}(S_{n+1}, (a, \text{event#}, \text{unknown}, T_{n-1})) \)

else if \(\text{predicate}(L_i) = \text{nil} \)

then \text{notRedPush}(i, (a, \text{event#}, \text{true}, T_{i-1}))

if \(i = \text{satUpto} + 1 \) then \text{satUpto} + 1;

else

\text{notRedPush}(i, (a, \text{event#}, \text{unknown}, T_{i-1}))

**procedure notRedPush(i, R)

/** Push \(R \) on path stack \(S_i \) if it is not redundant.

if not ((\text{top}(S_i).\text{predStatus} = \text{true})

and (\text{top}(S_i).\text{leftPtr} = T_{i-1}))

then \text{push}(S_i, R)

**procedure PText(s)

/** Process a text event

\(e \leftarrow \text{current element} \)

/** Parent of text

Obtain \((L_T, L_F) \) from the predicate checker, for \(e \)

/** Modify corresponding path and cand stacks:

\(\text{deleteFalse}(e, L_F); \text{satTrue}(e, L_T) \)

**procedure deleteFalse(e, L_F)

/** \(e \) fails the predicates in the location steps \(L_i \in L_F \);

/** so, delete \(e \) from corresponding path stacks.

for each \(i \) such that \(L_i \in L_F \) and \(\text{top}(S_i) = R_i(e) \) do

/** satUpto < i \leq \text{nempty}.

/** and \(\text{top}(S_i).\text{predStatus} = \text{unknown} \).

if \((i < n) \) and (\text{topBunch}(C_i).\text{pathPtr} = T_i) \)

then bunch \(\leftarrow \text{popBunch}(C_i) \) else bunch \(\leftarrow \phi \);

\text{pop}(S_i)

if \((T_i \neq \text{nil}) \) and \((\text{bunch} \neq \phi) \)

then \text{pushBunch}(i, \text{bunch})

**procedure pushBunch(i, bunch)

/** bunch is a set of cand for output; push bunch on

/** \(C_i \) after, if necessary, merging with \text{topBunch}(C_i).

if \(\text{topBunch}(C_i).\text{pathPtr} = T_i \)

then bunch' \(\leftarrow \text{popBunch}(C_i) \) else bunch' \(\leftarrow \phi \);

\text{newbunch} \(\leftarrow \text{bunch} \cup \text{bunch}' \)

\text{newbunch}.\text{pathPtr} = T_i; \quad \text{push}(C_i, \text{newbunch})

**procedure setTrue(e, L_T)

/** \(e \) satisfies the predicates in location steps \(L_i \in L_T \);

/** so, update \(R_i(e) \) and \(C_i \).

for each \(i \) such that \(L_i \in L_T \) and \(\text{top}(S_i) = R_i(e) \) do

/** satUpto < i \leq \text{nempty}.

/** and \(\text{top}(S_i).\text{predStatus} = \text{unknown} \).

\(\text{top}(S_i).\text{predStatus} \leftarrow \text{true} \)

if \((i = n) \) and (\text{satUpto} = n - 1) and

\((\text{top}(S_n).\text{leftPtr} = T_{n-1}) \)

then pop and output \(\text{top}(S_n) \);

\(\text{go} \) to the next pass of the \(for \) loop

if \((i = \text{satUpto} + 1) \) and (\text{top}(S_i).\text{leftPtr} = T_{i-1})

then \text{satUpto}++;

if \(\text{topBunch}(C_i).\text{pathPtr} = T_i \)

then pop and output \(\text{topBunch}(C_i) \)

**procedure PEndElement(a)

/** Process an \text{endElement} event

\(e \leftarrow \text{doc node whose endElement} \) event was seen

Obtain \((L_T, L_F) \) from the predicate checker, for \(e \)

/** \(e \) is closing; \(L_T \cup L_F \) should contain all location

/** steps for which \text{predStatus} was \text{unknown}.

/** Modify corresponding path and cand stacks:

\(\text{deleteFalse}(e, L_F); \text{setTrue}(e, L_T); \text{deleteTrue}(e) \)

\(e' \leftarrow \text{parent}(e) \)

/** \(e' \) is obtained by popping stack of the predicate

/** checker; it becomes new current element.

if \(\text{label}(e') \neq \phi \) then /** not reached document end

/** As result of the \text{endElement} event for \(e \),

/** some predicates become \text{true}/\text{false} at \(e' \).

Obtain \((L_T, L_F) \) from predicate checker, for \(e' \)

/** Modify corresponding path and cand stacks:

\(\text{deleteFalse}(e', L_F); \text{setTrue}(e', L_T) \)

**procedure deleteTrue(e)

/** \(e \) is closing;

/** delete \(e \) \(\text{predStatus} = \text{true} \) from all path stacks

for each \(i \) s. t. \(\text{top}(S_i) = R_i(e) \), in \(\uparrow \) order of \(i \), do

/** \(1 \leq i \leq \text{nempty} \) and \(\text{top}(S_i).\text{predStatus} = T \).

/** \(\text{top}(S_i).\text{leftPtr} = T_{i-1} \) (because of \(\uparrow \) order of \(i \)).

if \(i = n \)

then \text{pop}(S_n)

\(\text{pushBunch}(n - 1, (\text{label}(e), \text{event#}, T_{n-1})) \)

else if \(\text{topBunch}(C_i).\text{pathPtr} = T_i \)

then \text{bunch} \(\leftarrow \text{popBunch}(C_i) \)

\(\text{push}(C_i, \text{newbunch}) \)

\(\text{pop}(S_i); \quad \text{if} \ i = \text{satUpto} \text{then} \text{satUpto} = \)