Multiple Layered Neural Networks

Sattiraju Prabhakar
CS898R: MultiLayeredNN
Wichita State University

Topics

- Non-linear classification tasks
- Sigmoid Threshold Unit
- Backpropagation Algorithm

Non-Linear Classification Tasks

Classification of Phonemes
Hand-written Digit Recognition

- 3-nearest-neighbor = 2.4% error
- 400-300-10 unit MLP = 1.6% error
- LeNet: 768-192-30-10 unit MLP = 0.9%

Sigmoid Threshold Units

Sigmoid Unit

\[s_w = \sum_{j} w_j x_j \]
\[\sigma = \sigma(s_w) = \frac{1}{1 + e^{-s_w}} \]

Sigmoid Function
Sigmoid Unit

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

Nice property: \(\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x)) \)

We can derive gradient decent rules to train
- One sigmoid unit
- *Multilayer networks* of sigmoid units → Backpropagation

Multi-layer Sigmoid Units

MultiLayer Network of Sigmoid Units

![MultiLayer Network of Sigmoid Units](image)

Multi-layered Network

Layers are usually fully connected; numbers of hidden units typically chosen by hand

- Output units \(a_\text{out} \)
- Hidden units \(a_h \)
- Input units \(a_i \)
Example of Feed-forward Network

Learning Problem

- To find w (vector)
- Hypothesis space:
 - Defined by all possible weights for all possible units in the network
- The error surface is similar to linear units, defined by E (on slide 13)
- Gradient descent is used to attempt to find a hypothesis to minimize E.

Backpropagation Algorithm

- Error over all of the network output units:
 \[
 E(w) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in \text{outputs}} (t_{kd} - o_{kd})^2
 \]
 - $E(w)$: Error function
 - t_{kd}: Target values associated with k^{th} output unit and training example d
 - o_{kd}: Output value associated with k^{th} output unit and training example d

Explanation of Terms

- A node is either an input to the network or the output of some unit
- An index is assigned to each node in the network
- x_i (or x_{id}) denotes the input from node i to unit j
- w_{ij} (or w_{ij}) denotes the weight associated with connection between node i and unit j
- δ_n denotes the error term associated with unit n
- Each training example is $<x, t>$, both are vectors.
Backpropagation Algorithm

Initialize all weights to small random numbers.

Until satisfied, Do
- For each training example, Do
 1. Input the training example to the network and compute the network outputs
 2. For each output unit k
 \[\delta_k = o_k(1 - o_k)(t_k - o_k) \]
 3. For each hidden unit h
 \[\delta_h = o_h(1 - o_h) \sum_{k \in \text{next layer}} w_{h,k} \delta_k \]
 4. Update each network weight $w_{i,j}$
 \[w_{i,j} = w_{i,j} + \Delta w_{i,j} \]
 where
 \[\Delta w_{i,j} = \eta \delta_i x_{i,j} \]

Backpropagation Learning

At each epoch, sum gradient updates for all examples and apply

Usual problems with slow convergence, local minima

Properties of Backpropagation

- Gradient descent over entire network weight vector
- Easily generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum
 - In practice, often works well (can run multiple times)
- Often include weight momentum α
 \[\Delta w_{i,j}(t) = \eta \delta_i x_{i,j} + \alpha \Delta w_{i,j}(t-1) \]

Properties of Backpropagation

- Minimizes error over training examples
 - Will it generalize well to subsequent examples?
- Training can take thousands of iterations \rightarrow slow!
- Using network after training is very fast
Face Recognition Example

Face Recognition Task (1)

- **Task:**
 - Classifying camera images of faces of various people in various poses.

- **Input Data:**
 - Images of 20 different people
 - 32 images per person, varying in:
 - expression (happy, sad, angry, neutral)
 - direction they are looking (left, right, straight ahead, up)
 - whether or not they are wearing sunglasses
 - variation in background
 - clothing worn by person
 - position of the person's face within the image

Typical Input Images

Typical input images
Face Recognition Task (2)

- Target Functions:
 - Identity of the person
 - Direction in which the person is facing
 - Gender of the person
 - Whether the person is wearing sunglasses or not

Learned Hidden Unit Weights

Learned Weights