CUDA/GPGPU Workshop 2012

CUDA/GPGPU Arch&Prog

Chok Yip

Wichita State University
7/11/2012
GPU-Hardware perspective

- GPU as PCI device
 - Original PCI
 - PCIe
- Inside GPU architecture
GPU as PCI device

- Traditional PC connects to devices through 2 nodes (North & South Bridge)
- Southbridge serves as a concentrator for slower I/O devices
- GPU was connected as peripheral devices
GPU as PCI device

- PCI Device are mapped into CPU’s physical address space
- Addresses assigned to the PCI devices at boot time
 - Devices poll for input
PCle Bus

• PCle now serves as backbone
 – Northbridge/Southbridge are PCle switches
 – Some PCle cards are PCI cards with PCI to PCle bridge
GPU-PCI-E

- Devices connect to same switch
 - Each card links to central switch
 - Dedicated bus(links) for PCI-E devices
 - Packet switches messages from virtual channel
GPU Architecture

• GPU (the chip itself) consists of group of Streaming Multiprocessors (SM)
• Inside each SM
 – 32 cores (sharing the same instruction)
 – 64KB shared memory (shared among the 32 cores)
 – 32k 32bit registers
 – 2 warp schedulers (To schedule instructions)
 – 4 special function units
GPU Architecture

- Each core
 - Logic
 - Move, Compare
 - Branch
 - Fused Multiply-Add for single (32bit) and double (64bit) precision
Therefore, one SM can perform
- 32x32bit floating point/clock
- 16x64bit floating point/clock
- 32x32bit Integer/clock

Each SM shares the same instruction

Each GPU Chip have different number of SM

On a high-end consumer card
- GTX 480 has 15 SM
- GTX 680 has 96 SM
- This translates to performance
CPU and GPU Comparison

- **CPU**: Low Latency
 - Fast access to memory through caching
 - Control logic for out-of-order and speculative execution
 - High clockspeed

- **GPU**: High Throughput
 - High latency, high throughput
 - Relatively simple control logic
 - Massively parallel ALUs
CPU and GPU Comparison

- CPU architecture reduces memory access time within each thread to enhance throughput
- GPU architecture increases number of concurrent threads to enhance throughput

Optional:

CPU threads are equivalent to Warps (Warps as in collection of threads)
Each Warp will process 32 CUDA Threads concurrently
Threads and Blocks

• GPU threads are lightweight
 – GPU executes massive number of threads concurrently

• Low branching performance
Threads and Blocks

- CUDA Threads are grouped into blocks
 - This is to optimize the use of memory
- Instruction sent by host to GPU is called a Kernel
 - GPU sees a kernel as a grid of blocks of threads
Execution of Threads and Blocks

Each CUDA thread will execute in one core.

Depending on memory requirements of a kernel, multiple block may execute on each SM.

Each kernel can only be executed by one device (unless programmer’s intervention).
Multiple kernels may be executed at one time.
Execution of Kernel

• The host (CPU) executes a kernel in GPU in 4 steps

CPU allocates and copies data to GPU
On CUDA API:
 cudaMalloc()
cudaMemCpy()
Execution of Kernel

- CPU Sends function parameters and instructions to GPU
- CUDA API:

 \[\text{myFunc} \lll \text{Blocks, Threads} \rrr (\text{parameters}) \]
Execution of Kernel

- GPU executes instruction as scheduled in warps
- Results will need to be copied back to Host memory (RAM) using `cudaMemCpy()`
Questions?

References (including images):
• http://www.cc.gatech.edu/~vetter/keeneland/tutorial-2012-02-20/06-cuda-overview.pdf
CUDA Memory

• Memory Hierarchy of nVidia GPU
 – Speed:
 – Registers > Shared Memory > Constant Cache > Texture Memory > Device Memory

• Memory Sizes:
 – Registers (per SM) 32kb
 – Shared Mem (per SM) 64KB
 – Constant
 – Texture
 – Device Memory (per card) up to 6GB
CUDA Memory

• Recall: each block consists of a set of threads
• Each Thread is given a small piece of Local memory
• Blocks do not span more than one SM
• Each Block owns a shared memory
Memory Hierarchy

- Local memory for each thread is private
 - Lifespan only during thread execution
- Shared Memory is accessible among threads for each block
 - Lifespan only during kernel call
- In CUDA API:
  ```
  __shared__ int a[SIZE];
  ```
Memory Hierarchy

• Lifespan of Global Memory:
 – Global Memory will be reserved until programmer uses `cudaFree()`

• Global Memory is accessible among blocks
 – Higher latency
 – Off-chip memory
 – `cudaMalloc()` allocates memory here
• Note that every GPU board has its own memory
• Programmer in CUDA is responsible for memory allocation and free operations

Chok
A CUDA Example

• CUDA Kernel consists of two parts

1. `void add<<<1, N>>>(int dev_a, int dev_b, int dev_c)`

 N tells CUDA how many threads to execute this function on

 In this case this generates N threads each block

2. `__global__ void add(int*a, int*b, int*c) {`

 `c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];`

 `}`

 this is a CUDA Kernel (GPU Code)

• The number of thread blocks in a grid and the number of threads in a thread block is controlled by the programmer passing in variables to the kernel launch command.
A CUDA Example

• With add() running in parallel...let’s do vector addition
• Kernel can refer to its thread’s index with the variable threadIdx.x

• Each thread adds a value from a[] and b[], storing the result in c[]:

  ```c
  __global__ void add( int*a, int*b, int*c ) {
    c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
  }
  ```
• By using threadIdx.x to index arrays, each thread handles different indices
A CUDA Example

• We write this code:

```c
__global__ void add( int*a, int*b, int*c ) {
    c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
}
```

```c
void add<<<1, N>>>(int dev_a, int dev_b, int dev_c)
```

• N=4, This is what runs in parallel on the device:

<table>
<thead>
<tr>
<th>Thread 0</th>
<th>Thread 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>c[0] = a[0] + b[0];</td>
<td>c[1] = a[1] + b[1];</td>
</tr>
<tr>
<td>Thread 2</td>
<td>Thread 3</td>
</tr>
</tbody>
</table>
__global__ void add(int*a, int*b, int*c) {
 c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
}

int main(void) {
 int a, b, c; // host copies of a, b, c
 int* dev_a, *dev_b, *dev_c; // device copies of a, b, c
 int size = sizeof(int); // we need space for an integer
 // allocate device copies of a, b, c
 cudaMalloc((void**) &dev_a, size);
 cudaMalloc((void**) &dev_b, size);
 cudaMalloc((void**) &dev_c, size);
a = 2;
b = 7;
A CUDA Example

// copy inputs to device
cudaMemcpy(dev_a, &a, size, cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, &b, size, cudaMemcpyHostToDevice);

// launch add() kernel on GPU, passing parameters
add<<< 1, 1 >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c
cudaMemcpy(&c, dev_c, size, cudaMemcpyDeviceToHost);
cudaFree(dev_a);
cudaFree(dev_b);
cudaFree(dev_c);
Return 0;
}
Another Example

• Matrix Multiplication
 – Problem: Recall that each block can hold maximum of 512 threads
 • What if matrix contains more than 512 elements?
 – Solution: Group threads into blocks
Another Example

• In this example, we will attempt to group 16x16 matrices into 16 4x4 tiles

// CUDA Kernel
__global__ void matrixMul(float* C, float* A, float* B, int wA, int wB)
{
 // 1. 2D Thread ID
 int tx = blockIdx.x * TILE_SIZE + threadIdx.x;
 int ty = blockIdx.y * TILE_SIZE + threadIdx.y;
 .
 .
}
Another Example

• Calling the kernel

```c
// setup execution parameters
dim3 threads(BLOCK_SIZE, BLOCK_SIZE);
dim3 grid(WC / threads.x, HC / threads.y);

//BLOCK_SIZE = 16, WC = 16, HC = 16

// execute the kernel
matrixMul<<<grid, threads>>>(d_C, d_A, d_B, WA, WB);
```
CUDA/GPGPU Arch & Prog

THANK YOU