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Abstract—The benefits of caching for reducing access time to
frequently needed data, in order to improve system performance,
are already well-known. In this paper, a proposal for employing
data caching for increasing the level of anonymity provided by
an anonymity system is presented. This technique is especially
effective for user sessions containing bidirectional communica-
tion, such as anonymous web browsing. A framework is first
constructed for capturing the effect of attacks on anonymity
systems that have the ability to serve some incoming user requests
from their cache. A system-wide metric is then presented for
measuring the anonymity provided by such systems. It is shown
that the anonymity level of such systems rises with the amount
of data caching performed by them. This behavior is illustrated
in an example threshold mix network.

Index Terms—Anonymity Metrics, Caching, Privacy.

I. INTRODUCTION

Applications of the Internet that require anonymous com-
munication are becoming increasingly visible and their need
is expected to grow significantly. Anonymous web surfing,
chatting, e-mailing and e-voting are just some examples of
tasks that require anonymity. As the underlying architecture
of the Internet was not designed with such applications in
mind, it has become necessary to develop special systems that
bridge this gap and provide the needed anonymity.

Two fundamental directions in which research on anonymity
systems is usually performed are:
• System architecture, which includes designs of anonymity

systems, various techniques and strategies that underlie
them, study of attacks they are vulnerable to, etc., and

• Anonymity metrics, which includes methods for measur-
ing the level of anonymity provided by systems, evalu-
ating and comparing robustness of systems against given
attacks, etc.

The work described in this paper spans both of the above
directions.

Our architectural contribution is a proposal to adopt the
technique of data caching in an anonymity system that, in
addition to resulting in the expected performance gain due to
caching, has the benefit of enhancing the level of anonymity
provided by the system. While most currently popular tech-
niques for providing anonymity, such as message routing
via proxies and onion encryption, do so at the expense of
increasing message latency, data caching has the advantage of
providing anonymity in addition to decreasing latency.

As our metric contribution, we develop a new metric for
measuring the anonymity level of a system equipped with

caching abilities, and show that the greater the amount of
caching performed by the system, the higher its resulting
anonymity level. We also illustrate this phenomenon of rising
anonymity in an example threshold mix network. To the best
of our knowledge, our work is the first attempt at quantifying
the anonymity gains resulting from caching.

A. Related Work

The most popular architecture to date for anonymity systems
is a mix network, proposed by Chaum [1], which is a collec-
tion of proxy machines that jointly relay messages between
senders and receivers connected to the network. TOR [6] and
Mixminion [4] are well-known examples of real systems based
on this architecture.

Not much work has yet been done, however, on employing
data caching as a technique for achieving anonymity, despite
the recognition made by Shubina and Smith [14] of the
potential of caching for this purpose. They proposed providing
anonymity by a proactive procurement of web content from
available caches, such as Google cache, but since then there
has not been any follow-up work in this direction, such as
an analysis of anonymity gains thus achieved or a study
of caching strategies for maximizing anonymity, etc. Kim
and Kim [9] also noted the possibility of using caching
for achieving anonymity, but their work focuses on server
anonymity in unstructured P2P systems. In this paper, we study
caching performed by mix-based anonymity systems.

The subject of anonymity metrics, on the other hand, has
enjoyed much research attention. Chaum [2] suggested usage
of the size of the set of possible users, within which a particu-
lar user blends in, as a measure of anonymity provided to that
user. Serjantov and Danezis [11] proposed an entropy-based
measure that takes into account the probabilities assigned by
an attacker to different users for being the sender (or receiver)
of a particular message. Diaz, Seys, Claessens and Preneel
[5] gave a better entropy-based metric that can be used to
compare systems with different number of users. Tóth, Hornák
and Vajda [15] argued to additionally consider as a metric, the
maximum probability an attacker can assign to any user. Kelly
et al. [8] is a good survey of well-known work in the area of
anonymity metrics.

All approaches mentioned above for measuring anonymity
are from the point of view of a single user of the system
or message. In contrast, Edman, Sivrikaya, and Yener [7]
proposed a framework for measuring the anonymity provided



by a system as a whole. Their method is based upon the size
of the set of possible input-output pairs of messages that any
particular input-output message pair blends in.

In this paper, we first develop a system-wide metric that
is a generalization of this metric for systems that perform
data caching. We then show that the anonymity level of
such a system rises with increased caching, and illustrate
this phenomenon in an example threshold mix network. Such
networks were first proposed by Serjantov, Dingledine and
Syverson [12].

B. Paper Outline

The rest of this paper is organized as follows. Section II
gives an overview of the approach of Edman et al. [7] for
measuring anonymity. It presents the underlying system model
for which their metric is constructed, some examples of attack
results on such systems, and the rationale for their metric.
Section III presents our approach that first removes some of
the limitations of the system model of [7] and then equips the
system with an ability to cache data. This section then presents
our generalized anonymity metric for systems that employ
caching. It goes on to showing that the level of anonymity of
a system enjoys a monotonically increasing relationship with
the amount of caching performed in it. Section IV highlights
this relationship in an example threshold mix network. Finally,
Section V contains conclusions from our work and gives
several directions for future work.

II. A SYSTEM-WIDE ANONYMITY METRIC

In this section we give an overview of the metric proposed
by Edman, Sivrikaya, and Yener [7] for the level of anonymity
provided by an anonymity system. Their metric is not specific
to any particular architecture of the underlying system, such
as one organized as a common network of mixes introduced
by Chaum [1], but is applicable to any system that attempts
to provide anonymity to communication transmitted via it.
Moreover, the metric gives a system-wide measure of the
effectiveness of the anonymity system, unlike most other
approaches that typically measure the anonymity provided
from the perspective of a single user or message in the system.

A. The Underlying Model

Let S be the set of input messages observed by a passive
observer having entered an anonymity system, and T be
the set of output messages observed by the same observer
having exited from that system. We assume that every input
message eventually appears as an output message, and that
the anonymity system does not generate any output messages
by itself. Thus, there is a one-to-one correspondence between
S and T , and the sizes of these sets are identical. We let m
denote their size, i.e. |S| = |T | = m.

The main goal of the anonymity system is to prevent
the observer from determining the underlying correspondence
between S and T . It may attempt to achieve that goal by
employing a number of techniques such as:

• modifying message encoding by encryption/decryption to
prevent message bit-pattern comparison by the observer,

• outputting messages in an order other than the one in
which they were received to prevent sequence number
association by the observer, etc.

The maximum anonymity this system can strive to achieve is
when for any particular output message in T , each of the input
messages in S is a possible candidate to be the one that exited
the system as that message in T . We depict this situation by the
complete bipartite graph Km,m between S and T , as shown in
Figure 1(a). Any edge 〈si, tj〉 in this graph indicates that the
incoming message si could possibly have been the outgoing
message tj .
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Fig. 1. (a) Complete anonymity. (b) An instance of no anonymity.

An attacker, on the other hand, attempts to eliminate as
many edges as possible from the complete bipartite graph
of Figure 1(a), due to their infeasibility concluded from the
attack. After a completely successful attack, for each outgoing
message t in T , the attacker would have identified exactly one
possible incoming message that could have exited the system
as t. In other words, the attacker would have obtained a perfect
matching between the input and output messages of the sys-
tem. In this case, the system is thus considered to provide no
anonymity. There are m! possible perfect matchings between
S and T , an arbitrary one of which is shown in Figure 1(b).

B. Some Attack Examples

Figures 1(a) and 1(b) correspond to the two extreme situa-
tions, namely complete anonymity and no anonymity at all. In
general, after having detected some input-output pairings as
infeasible, an attack would result in a bipartite graph that lies
somewhere in between these two extreme ends. Let this graph
of possible input-output pairings resulting from an attack be
called the candidacy graph of that attack. Exactly which edges
of the complete bipartite graph are missing from an attack’s
candidacy graph will depend upon how much information is
available to that attack.

For example, if messages passing through an anonymity
system are not padded to become of the same size, then
message sizes can clearly be used to rule out input-output
message pairings that are of different sizes. Many anonymity
systems therefore pad their messages to become of equal size.



However, systems in which all messages are of the same size
are then constrained to have some maximum route length for
messages, due to the fact that each message (upon leaving
the sender) contains in it the addresses of all proxy servers
it will go via. Serjantov and Danezis [11] present an attack
that exploits knowledge of this maximum route length. The
example of Figure 2 shows how this attack can render certain
input-output pairings as infeasible.
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Fig. 2. (a) Route length attack. (b) Candidacy graph.

Figure 2(a) shows an anonymity system with three mix nodes,
S = {s1, s2, s3}, and T = {t1, t2, t3}. Messages a, b, and c
are within the system. Suppose the maximum route length for
messages in this system is 2, i.e. any si can pass through at
most 2 mix nodes. If an attacker knows the maximum route
length of this system, and can observe messages entering and
leaving each mix node, then he can infer that message c must
be s3, because if it were either s1 or s2 the route length
condition is violated as then that message would have passed
through 3 mix nodes. Therefore, t3 cannot be s3. Figure 2(b)
shows the candidacy graph resulting from this analysis, from
which the edge 〈s3, t3〉 is thus absent.

Edman et al. [7] give another attack that notes the times at
which messages enter an anonymity system and exit from it.
If in addition to this, the attacker knows the minimum and/or
maximum latency of messages in the system, a candidacy
graph better than the complete bipartite graph can be arrived
at, as shown in the example of Figure 3.
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Fig. 3. (a) Message entry and exit times. (b) Candidacy graph.

Suppose each message entering a certain anonymity system
comes out after a delay of between 1 and 4 time units. If 4
messages enter and exit this system at times shown in Figure
3(a), then s1 must be either t1 or t2, because the other outgoing
messages, namely t3 and t4, are outside the possible latency
window of s1. Similar reasoning can be performed on all other
messages to arrive at the candidacy graph of this attack, shown
in Figure 3(b).

C. Anonymity Metric

Given a candidacy graph obtained after performing an
attack, the number of possible perfect matchings allowed by
that graph between senders and receivers is a good indication
of the anonymity left in the system in the aftermath of the
attack.

For any bipartite graph G = (U, V, E), where |U | = |V |,
we let Ĝ denote the number of one-to-one correspondences
between U and V allowed by G. In other words, Ĝ is the
cardinality of the following set:

{f : U → V | f is a bijection, and
∀u ∈ U, 〈u, f(u)〉 ∈ E}.

Ĝ is also known as the permanent of the 0-1 adjacency matrix
of G (see Servedio and Wan [13] for the permanent of a
matrix).

When G = (S, T, E), where |S| = |T | = m ≥ 1,
is the candidacy graph of an attack, then Ĝ is essentially
the number of perfect matchings between the incoming and
outgoing messages possible after the attack. For a completely
toothless attack, G is the complete bipartite graph Km,m, as in
Figure 1(a), and Ĝ = m!. If, on the other hand, G is the result
of the most successful attack that has succeeded in correlating
all incoming messages with their outgoing counterparts, as in
Figure 1(b), then Ĝ = 1. For the attack of Figure 2, Ĝ can be
seen to be 4, and for that of Figure 3, Ĝ can be seen to be 4
as well.

We define the anonymity level of the system after an attack
with candidacy graph G as:

d(G) =

{
0 if m = 1,
log(Ĝ)

log(m!)
otherwise.

As Ĝ perfect matchings between S and T are still possible
after the attack (of the m! total possible before the attack),
log(Ĝ) / log(m!) captures the amount of information the
attacker still needs to reveal the entire communication pattern
of the system. The value of d(G) always lies between 0 and 1.
When d(G) = 0, Ĝ = 1 and the system provides no anonymity
to any sender. When d(G) = 1, Ĝ = m!, i.e. the system is
providing maximum anonymity. For the attack of Figure 2,
the anonymity level is log(4) / log(6) ≈ 0.774, and for that of
Figure 3, the anonymity is log(4) / log(24) ≈ 0.436.

It is instructive to observe that most other entropy-based
metrics, such as of Serjantov and Danezis [11] or of Diaz
et al. [5], are for single messages. Such metrics thus have
reasonable intuitive interpretations with as well as without



normalization by the number of messages or users in the
system. The metric defined above, on the other hand, is for the
entire anonymity system. Here, normalization (i.e. division by
log(m!)) is necessary for correct measurement, as illustrated
by the following argument.

Suppose a new mix is added to the system in Figure 2(a)
with s4 as its only input and t4 the only output. The candidacy
graph of this system will have the edge 〈s4, t4〉, in addition
to those in Figure 2(b). The anonymity level of the modified
system is clearly lower than that of the original one, as it
exposes s4 completely. However, Ĝ = 4 is still the same for
both systems, so by itself is not a good metric. The normalized
metric, on the other hand, decreases from log(4) / log(6) ≈
0.774 to log(4) / log(24) ≈ 0.436, which is in line with our
intuitive lowering of the anonymity level.

III. DATA CACHING

The model of the anonymity system presented in the previ-
ous section has the following two characteristics:
• the communication carried by the system is only unidi-

rectional, and
• the system simply relays all messages.

The above characteristics are limiting. Firstly, such systems are
often used by clients to anonymously access resources from
servers, such as web-browsers obtaining files from web-servers
during a session of anonymous web-surfing. In such appli-
cations, clients need to send anonymous requests to servers
and receive responses to their requests, i.e. communication
via the anonymity system is bidirectional. Secondly, if the
anonymity system is equipped with the ability to store some
requested content in its cache, subsequent client requests for
those cached resources can be satisfied by the system itself.
As those requests do not need to be relayed to their respective
end servers, they can be blocked by the anonymity system. In
this section we present a model of an anonymity system with
such caching abilities, and show that this added functionality
improves the overall anonymity provided by the system.

A. A New Model

We consider an anonymity system that maintains one or
more internal caches. The system might fill its caches either in
an eager and proactive manner, such as by fetching in advance
contents of web pages frequently accessed via it, or in a lazy
and reactive manner, as by storing a copy of some of the server
responses that pass through it. Upon receiving any request
message from a sender, it first determines if that request can
be served by cached content already present in the system. If
so, that incoming request is served from within and it does
not appear as an outgoing message of the system.

If S and T are, as before, the sets of input and output
messages of this system, respectively, this system behavior
results in |S| ≥ |T |. Note that, in general, a perfect matching
between S and T is not possible any more.

Of the |S| = m input messages of the system, suppose
only |T | = n appear as output, where m ≥ n. The remaining
m−n messages are assumed to be blocked by the system due

to caching. The candidacy graph of an attack will now be a
bipartite graph between S and T whose set of edges will be
a subset of the set of edges in the complete Km,n bipartite
graph.

As an example, suppose the system of Figure 2(a) does
not produce message t3 as output because it can service that
request from its cache. Thus, for this system, S = {s1, s2, s3},
and T = {t1, t2}. The candidacy graph of the same attack on
this modified system is essentially that in Figure 2(b), from
which the vertex t3 is deleted, along with all edges connected
to it. The resulting candidacy graph is shown in Figure 4(a). It
is, in fact, the complete bipartite graph K3,2, because the attack
can now eliminate no input-output message pair as infeasible.
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Fig. 4. (a) Candidacy graph G of route length attack on system of Figure
2, modified with cache for message t3. (b) All left-projections of G.

B. A Generalized Anonymity Metric

As for measuring the anonymity provided by a system that
performs caching, we begin by making the following two
observations:
• The m − n blocked messages do not appear as output,

so cannot be correlated with any outgoing message.
The anonymity received by these blocked messages is
therefore considered to be maximal, since an observer
cannot deduce whom their senders communicated with.

• Although there may not be a perfect matching between
S and T (if their sizes are different), the n outgoing
messages must be some n of the m incoming messages.
The total number of possible matchings allowed by a
candidacy graph, between T and any subset of S of size
n, is a now a good indication of the anonymity provided
by the system after the attack.

For any set U , and n ≥ 0, we let Sn(U) be the set of all
subsets of U of size n.

Definition 1: A bipartite graph P = (W, V, F ) is called a
left-projection of a bipartite graph G = (U, V, E), if:

1) W ∈ S|V |(U), and
2) F = {〈u, v〉 ∈ E | u ∈W}.

In other words, P is a subgraph obtained from G by removing
any |U | − |V | vertices from U (and edges connected to those
vertices). We let L(G) denote the set of all left-projections of



G. The following proposition follows immediately from the
above definition.

Proposition 1: If G is a complete bipartite graph Km,n,
where m ≥ n, then each P ∈ L(G) is a complete bipartite
graph Kn,n.

Figure 4 is an example of the situation mentioned in the
above proposition. The candidacy graph of Figure 4(a) is
complete, with m = 3 and n = 2. Figure 4(b) shows
all its left-projections. They are all complete as well, with
just different vertex labels. The following proposition is also
straightforward.

Proposition 2: Any labeled bipartite graph G = (U, V, E)
has

(
|U |
|V |

)
distinct left-projections.

We now develop our metric for the anonymity provided
by a system after an attack that results in a candidacy graph
G = (S, T, E), where |S| = m ≥ 1, |T | = n ≥ 0, and m ≥ n.
We define the system’s anonymity level as:

d′(G) =
0 if m = n = 1,
1 if n = 0,

1
m

(m− n) +
n log

(∑
P∈L(G)

P̂

)
log((m

n ) n!)

 otherwise.

The above metric can be viewed as the arithmetic mean of the
anonymity provided by the system to each of the m incoming
messages. Its value also lies between 0 (for no anonymity) and
1 (for full anonymity).

As observed earlier, of all the m input messages, m − n
messages get blocked by the system and do not appear as
output, so the anonymity provided to those m − n messages
is maximal, i.e. 1.

The total number of perfect matchings allowed by G for
the remaining n messages is the sum of the number of their
perfect matchings allowed by all the left-projections of G, i.e.∑

P∈L(G)

P̂ .

Moreover, there are (m
n ) left-projections of G, each of which

can allow a maximum of n! perfect matchings.
The following theorem shows that the above metric d′ is

a generalization of the old metric d, in that the two coincide
when the system cannot make use of caching to eliminate any
output message.

Theorem 1: If m = n, d′(G) = d(G).
Proof: Both metrics are 0 for m = 1. When m > 1, since

m = n, L(G) is the singleton set {G}, and (m
n ) = 1. Thus,

in this case, d′(G) simply reduces to log(Ĝ) / log(m!), which
is d(G).

C. Enhanced Anonymity

Although it is intuitive that caching enhances the anonymity
provided by a system, we now formally prove that fact. We
begin by revisiting the example of Figure 4 and, as an exercise,
compute the anonymity of that attack according to our new

metric. For the candidacy graph G of Figure 4(a), m = 3 and
n = 2. All left-projections of this candidacy graph are shown
in Figure 4(b). It is easily seen that for each P ∈ L(G), P̂ = 2.
The anonymity level d′(G) is thus

1
3

[
1 +

2 log (2 + 2 + 2)
log(

(
3
2

)
2!)

]
,

which is 1. On the other hand, the anonymity level of the
candidacy graph of Figure 2(b) was computed in Section II-C
to be log(4) / log(6) ≈ 0.774. Caching has thus resulted in
an increase in the anonymity of this system by eliminating
the outgoing message t3. It can be verified that a somewhat
modest gain in anonymity, from 0.774 to 0.849, is achieved by
eliminating instead any one of the other messages, t1 or t2. If,
however, both t1 as well as t2 can be eliminated, the system’s
anonymity level is higher, 0.877. We now show that such a
gain in the anonymity can always be expected by caching.

Definition 2: A bipartite graph H = (U, Q, F ) is called a
right-clipping of a bipartite graph G = (U, V, E), denoted
G � H , if:

1) V ⊇ Q, and
2) F = {〈u, v〉 ∈ E | v ∈ Q}.

In other words, H is a subgraph obtained from G by removing
zero or more vertices from V (and edges connected to those
vertices). The following proposition follows immediately from
the above definition.

Proposition 3: If G is labeled, it has 2|V | right-clippings.
Note also, that � is a reflexive, antisymmetric, and tran-

sitive relation on bipartite graphs, resulting in the following
proposition.

Proposition 4: � is a partial order.
It is instructive to observe that, adding caching into an

anonymity system essentially reduces the candidacy graph of
a given attack to some right-clipping of it. Our main result of
this section will demonstrate a monotonic relationship between
the amount of caching performed by a system and the level
of anonymity provided by it. We first establish the following
lemma pertaining to clipping exactly one right-vertex of a
candidacy graph.

Lemma 1: Let G = (U, V, E) and H = (U, Q, F ), where
|U | = m ≥ |V | = n + 1, and |Q| = n. If G � H , then

(n + 1) log
(∑

P∈L(G)P̂
)

log(
(

m
n+1

)
(n + 1)!)

≤ 1 +
n log

(∑
P∈L(H)P̂

)
log((m

n ) n!)
.

Proof: G has one vertex, called v, in addition to those
in H , i.e. V − Q = {v}. Let X be the number of perfect
matchings in H of Q, i.e. X =

∑
P∈L(H) P̂ . Consider any

such perfect matching of Q in some fixed P0 = (U0, Q, F0) ∈
L(H). As shown in Figure 5, since |U0| = n, the vertex v can
be connected in G to at most all of m−n vertices of U −U0.
There are thus at most m − n perfect matchings in G of V
that preserve the given perfect matching in H . Therefore,∑

P∈L(G)P̂ ≤ (m− n)X.
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Fig. 5. All possible connections of vertex v in G, for any given perfect
matching of Q in H .

Also, let Y = (m
n ) n!. It is easily verified that(

m
n+1

)
(n + 1)! = (m− n)Y.

It thus suffices to show that

1 +
n log(X)
log(Y )

− (n + 1) log((m− n)X)
log((m− n)Y )

≥ 0.

Both denominators in the above expression are positive. The
numerator of the expression obtained by converting the above
to have a common denominator for its terms is

log(Y ) log((m− n)Y ) + n log(X) log((m− n)Y )
−(n + 1) log((m− n)X) log(Y ).

It remains to be shown that the above is always non-negative.
By using elementary properties of logarithms and performing
algebraic simplification, the above expression can be easily
transformed to

[log(Y )− log(X)] [log(Y )− log((m− n)n)].

As Y is the maximum number of perfect matchings possible
in H of Q, and X is the actual number of them, it follows
that Y ≥ X , thus log(Y ) − log(X) ≥ 0. Also, since Y =∏m

i=m−n+1 i, which is a product of n values, each of whom
is larger than m − n, we have that Y ≥ (m − n)n. Thus,
log(Y )− log((m− n)n) ≥ 0, and the lemma holds.

We now show that by increasing the amount of data caching
performed by an anonymity system, the level of anonymity
provided by that system is also increased.

Theorem 2: Let G = (U, V, E) and H = (U, Q, F ), where
|U | = m ≥ |V | = nG ≥ |Q| = n. If G � H , then

d′(G) ≤ d′(H).

Proof (By weak induction on nG−n): In the base case,
nG − n = 0. The theorem follows trivially, as now G � H
implies G = H .

In the inductive case, nG − n > 0. By the inductive
hypothesis, for all bipartite graphs H ′ = (U, Q′, F ′), such
that |Q′| = n + 1 and G � H ′, we have that d′(G) ≤ d′(H ′).
Of these, there are exactly nG − n graphs H ′ for which,
additionally, H ′ � H . Since nG > n, firstly, at least one such

graph exists, and secondly, m > 1. Let H0 be that graph.
From the definition of d′(H0), we have

d′(H0) =
1
m

m− n− 1 +
(n + 1) log

(∑
P∈L(H0)

P̂
)

log(
(

m
n+1

)
(n + 1)!)

 .

By applying Lemma 1, we obtain

d′(H0) ≤
1
m

m− n +
n log

(∑
P∈L(H)P̂

)
log((m

n ) n!)

 .

The above expression is d′(H), and the theorem follows from
the transitivity of �.

IV. APPLICATION TO THRESHOLD MIX NETWORKS

Threshold mix networks were introduced by Serjantov,
Dingledine and Syverson [12] as a high-latency strategy to
counter input-output message correlation by operating a mix in
iterative rounds. A message is initially multiply encrypted, and
each mix that it passes through decrypts its outermost layer.
In each round, a mix in such networks collects some threshold
number m of incoming messages and outputs a decrypted
version of them in some different order. The decryption
prevents correlation by simple message bit-pattern comparison.
The main goal of this strategy is to prevent correlation by
message entry/exit sequence numbers by flushing messages
out in an order other than the one in which they came in.
Waiting for m messages to arrive before sending them out
adds latency, which is the price paid for achieving this goal.

From the point of view of anonymity, an important differ-
ence between this model and the one we have been considering
so far in this paper is that any incoming message now blends
in with other messages only in its own round. This has a
detrimental effect on the overall anonymity of the system,
especially as rounds progress. Let after r rounds, n ≤ m
be the average number of messages sent out in each round
(where the remaining m − n incoming messages per round
were served by the system’s internal cache).
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Fig. 6. Candidacy graph without any attack after two rounds, with m = 4
and n = 3.

Figure 6 shows the candidacy graph without any attack after
two rounds, with m = 4 and n = 3. Since there is no attack,



the candidacy graph after the first round is K4,3, for which
the level of anonymity is d′ = (1/4) ∗ ((4 − 3) + 3 log(24) /
log(24)) = 1. However, after two rounds, as shown in Figure
6, the candidacy graph is K4,3∪K4,3, for which the anonymity
level can be seen to have been lowered from d′ = 1 to d′ =
(1/8) ∗ ((8− 6) + 6 log(24) / log(56)) = 0.842.

In general, after r rounds, the overall anonymity provided
by the mix thus far is

1
m

[
m− n +

nr log((m
n ) n!)

log((mr
nr ) (nr)!)

]
.

Table I shows how the anonymity level of an example system
with m = 100 varies with the number of rounds and the
average amount of caching in each round performed by the
system.

Round Average Caching Level
Number 0% 20% 40% 70% 100%

1 1 1 1 1 1
2 0.7136 0.7889 0.851 0.9303 1
3 0.6069 0.708 0.7927 0.9022 1
4 0.5477 0.6625 0.7594 0.8861 1
5 0.5086 0.6322 0.7371 0.8752 1
6 0.4805 0.6102 0.7208 0.8671 1
7 0.4588 0.5932 0.7082 0.8609 1
8 0.4415 0.5796 0.698 0.8558 1
9 0.4273 0.5683 0.6895 0.8516 1
10 0.4153 0.5587 0.6824 0.8481 1

TABLE I
ANONYMITY IN A THRESHOLD NETWORK WITH m = 100, OVER

DIFFERENT AVERAGE CACHING LEVELS AND MIX ROUNDS

In the above table, the case of 0% caching corresponds to
n = m. If, on an average, the system responds to 20% of
the incoming messages by its cache, then n = 0.8 m. As
an extreme case, if all incoming messages can be handled by
the system’s cache, i.e. n = 0, then the level of anonymity
provided by the system after each round is 1, which is the
maximum.

Figure 7 depicts the anonymity variation given in Table I in
the form of an easier to visualize graph. It is evident from the
graph that the anonymity provided by the system reduces as
the rounds progress, but increases with the amount of caching
performed in the system.

V. CONCLUSIONS AND FUTURE WORK

Anonymity systems that are used for applications such
as anonymous web surfing, first attempt to provide sender
anonymity for requests sent by the users to servers, and then
receiver anonymity for the responses sent back by the servers
to the requesting users. If such systems have the ability to
cache some server responses, then those cached contents can
be used for future user requests for the same resources, without
having to relay those requests to the servers. We have shown
that the overall anonymity provided by such systems to their
users is higher than that provided by systems that do not
employ caching. In fact, our results show that the greater
the number of requests that can be served from the system’s

m = 100 Full caching

70% caching

40% caching

20% caching

No caching

Fig. 7. Graphical representation of anonymity levels in Table I.

internal cache, the higher the anonymity. To the best of our
knowledge, our work is the first attempt at quantifying the
anonymity gains resulting from caching.

Most currently popular techniques for providing anonymity,
such as message routing via proxies and onion encryption,
result in increasing message latency and are thus carried out
at the expense of performance. In contrast, data caching has
the advantage of providing anonymity in addition to improving
performance, as it clearly also results in reduction of band-
width usage and data access latency. Extra storage capacity of
mix nodes for holding the caches and extra effort needed to
keep those caches up-to-date are two trade-offs for the gains
achieved by caching. As storage is constantly becoming more
readily available, the first trade-off is insignificant. However,
maintaining cache consistency incurs traffic overhead and, if
not dealt with carefully, could cause unreasonable performance
degradation. Analysis of this aspect of caching in anonymity
systems, we have for now left as future work.

Our technique opens up several other possible future re-
search directions, as outlined below.

A network of mix nodes, as proposed by Chaum [1], is
a popular architecture of current anonymity systems, such as
TOR [6] and Mixminion [4]. In these systems, messages are
routed over paths of mix nodes, and these paths are constructed
dynamically from the pool of available mix nodes at any
time. An interesting direction for future research is developing
strategies for selecting mix nodes for placement of caches,
integrated with strategies for constructing paths of mix nodes
in order to maximize the system’s anonymity level. If a user’s
access patterns can be anticipated, then that user’s requests can
be routed over paths that are more likely to contain caches that
can satisfy those requests.

The Statistical Disclosure Attack (SDA), proposed by
Danezis [3], is known to be a very powerful attack, targeted
against a single user. The attack uncovers the servers often
contacted by that user. Many defense strategies have been pro-
posed for thwarting this attack, of which the one by Mallesh



and Wright [10] of sending dummy messages generated from
within the anonymity system is particularly effective. We plan
to combine that strategy with our caching technique, such
as for example by generating a dummy request each time a
genuine request is served by a cache. Such a combined strategy
should be an even more effective countermeasure against SDA,
especially if the system has an intelligent strategy to send its
dummy messages to strategically chosen servers.

The edges of the candidacy graphs we considered in this
paper are all equally likely. However, an attacker may be
able to assign probabilities to them by some function p(u, v)
indicating the probability that the incoming message u is the
outgoing message v. An anonymity metric for systems with
probabilistic attacks is presented in Edman et al. [7]. We are
currently working on arriving at a metric for such systems in
the presence of caching.
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